Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}=\frac{3a+5b}{3c+5d}\)
=> Đpcm
Chúc bạn làm bài tốt
vì a/b= c/d
⇒ a+b/c+d=3a+5b/3c+5d=3a-5b/3c-5d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
3a+5b/3c+5d=3a-5b/3c-5d
⇒ 3a+5b/3a-5b=3c+5d/3c-5d (đpcm)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}\) (1).
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a-5b}{3c-5d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}.\)
\(\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có:
a/b=c/d => a/c=b/d=2a/2c=3b/3d
= 2a+3b/2c+3d=2a-3b/2c-3d
=> 2a+3b/2a-3b=2c+3d/2c-3d (ĐPCM)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5b}{5d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\)
\(\Rightarrow\frac{3a+5b}{3a-5d}=\frac{3c+5d}{3c-5d}\)
Vậy \(\frac{3a+5b}{3a-5d}=\frac{3c+5d}{3c-5d}.\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
b: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
c: \(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{k-1}{k+1}\)
\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{k-1}{k+1}\)
Do đó: \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath