K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Áp dụng bất đẳng thức Cô - si ta có:

\(\left(p-a\right)\left(p-b\right)\le\dfrac{(p-a+p-b)^2}{4}=\dfrac{\left(2p-a-b\right)^2}{4}=\dfrac{c^2}{4}\)

\(\left(p-a\right)\left(p-c\right)\le\dfrac{(p-a+p-c)^2}{4}=\dfrac{\left(2p-a-c\right)^2}{4}=\dfrac{b^2}{4}\)

\(\left(p-b\right)\left(p-c\right)\le\dfrac{(p-b+p-c)^2}{4}=\dfrac{\left(2p-b-c\right)^2}{4}=\dfrac{a^2}{4}\)

\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\dfrac{a^2b^2c^2}{64}\)

\(\Leftrightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{abc}{8}\) (đpcm)

21 tháng 11 2018

Ap dung bdt Cauchy-Schwarz dang Engel co:

\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{\left(1+1\right)^2}{p-a+p-b}=\dfrac{4}{2p-a-b}=\dfrac{4}{c}\)

Tuong tu: \(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\);

\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\)

Cong theo ve cac bdt tren ta co:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

=> Đpcm

18 tháng 3 2017

Ta sẽ chứng minh bất đẳng thức quen thuộc sau:(a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\))\(\ge9\)

Thật vậy : áp dụng bđt cô si ta có :a+b+c\(\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

nhân vế theo vế ta được (a+b+c)(\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\))\(\ge9\)

Dấu "=" xảy ra khi:a=b=c

Áp dụng vào bài toán ta có:\(\dfrac{p}{p-a}+\dfrac{p}{p-b}+\dfrac{p}{p-c}=p\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\)

=\([\left(p-a\right)+\left(p-b\right)+\left(p-c\right)]\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge9\)

Dấu "=" xảy ra khi :p-a=p-b=p-c

\(\Leftrightarrow a=b=c\)

Vậy với a,b,c là độ dai 3 cạnh của 1 tam giác và chu vi bằng 2p thì \(\dfrac{p}{p-a}+\dfrac{p}{p-b}+\dfrac{p}{p-c}\ge9\)

18 tháng 3 2017

không biết

19 tháng 3 2019

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

19 tháng 3 2019

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:

\(\text{VT}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+abc(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}\)

\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{(a+b+c)^2}{ab+bc+ac}\)

\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\sqrt{(ab+bc+ac).\frac{(a+b+c)^2}{ab+bc+ac}}\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2(a+b+c)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c+(a+b+c)\)

\(\geq 6\sqrt[6]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}.a.b.c}+(a+b+c)=6+a+b+c\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

NV
18 tháng 9 2021

\(\dfrac{1}{\sqrt{a^3+1}}=\dfrac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\ge\dfrac{2}{a+1+a^2-a+1}=\dfrac{2}{a^2+2}\)

\(\Rightarrow VT\ge\dfrac{2}{a^2+2}+\dfrac{2}{b^2+2}+\dfrac{2}{c^2+2}\)

Do \(abc=8\Rightarrow a^2b^2c^2=64\) , tồn tại các số thực dương x;y;z sao cho:

\(\left(a^2;b^2;c^2\right)=\left(\dfrac{4x}{y};\dfrac{4y}{z};\dfrac{4z}{x}\right)\)

\(\Rightarrow VT\ge\dfrac{2}{\dfrac{4x}{y}+2}+\dfrac{2}{\dfrac{4y}{z}+2}+\dfrac{2}{\dfrac{4z}{x}+2}=\dfrac{y}{2x+y}+\dfrac{z}{2y+z}+\dfrac{x}{2z+x}\)

\(VT\ge\dfrac{x^2}{x^2+2xz}+\dfrac{y^2}{y^2+2xy}+\dfrac{z^2}{z^2+2yz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\) (đpcm)

18 tháng 9 2021

thầy ơi, sao chỗ Do abc = 8 ⇒ a2b2c= 64 lại suy ra các số thực dương x;y;z tồn tại được ạ? 

9 tháng 9 2018

k mk đi

ai k mk 

mk k lại

thanks