K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3bc-3ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

8 tháng 10 2017

undefined

8 tháng 10 2017

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

=> a^2 + b^2 + c^2 +2ac+2bc+2ab = 3(ab+bc+ab)

=> a^2 + b^2 + c^2 = ac+ab+bc

=> a^2 + b^2 + c^2 -ac-ab-bc =0

=>a^2 - ac + b^2 -ab +c^2 -bc =0

=> a(a-c) + b(b-a) + c(c-b) = 0

=> a(a-c)=0 , b(b-a)=0 , c(c-b)=0

=> a=0 a-c=0 => a=c

b=0 b-a =0 => b=a

c=0 c-b=0=> c=b

=> a=b=c

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

1 tháng 9 2020

Câu a bạn chứng minh được rồi là xong nha !!!!!!!

Câu b) 

\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)

\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)

Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được: 

=>   \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)

=>   \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

DẤU "=" Xảy ra <=>    \(a=b=c\)

Vậy ta có ĐPCM !!!!!!!!

9 tháng 6 2015

(a+b+c)^2 = 3(ab+bc+ac)  => a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ab - 3bc - 3ac = a^2 + b^2 + c^2 - ab - bc - ac=0

2(a^2 + b^2 + c^2 - ab - bc - ca)=0.2=0=> (a - b)^2 + ( b - c)^2 + (c - a)^2 = 0

=> a - b = 0 và b - c = 0 và c - a = 0 => a = b và b = c và c = a.

Vậy a = b = c

Bài 2: 

a+b+c+d=0

nên b+c=-(a+d)

\(a^3+b^3+c^3+d^3\)

\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)

\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)

\(=\left(b+c\right)\left(3ad-3bc\right)\)

\(=3\left(b+c\right)\left(ad-bc\right)\)

28 tháng 8 2017

lay 3-VT la xong ban ak,day la phuongphap dao dau ma

4 tháng 9 2017

(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc

* a2+b2+(c/3)2 \(\ge\)0

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)2ab+2/3ac+2/3bc

mà 2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca

=> (a+b+c/3)2\(\ge\)ab+bc+ca

18 tháng 9 2019

trả lời:

(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc

* a2+b2+(c/3)2 \ge≥0

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥2ab+2/3ac+2/3bc

mà 2ab+2/3ac+2/3bc\ge≥ab+bc+ca

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥ab+bc+ca

=> (a+b+c/3)2\ge≥ab+bc+ca