Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc
1/abc+bc+b = 1/1+bc+b
=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1
=> ĐPCM
k mk nha
Có : 1/ab+a+1 = abc/ab+a+abc = bc/b+1+bc
1/abc+bc+b = 1/1+bc+b
=> 1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = bc/bc+c+1 + b/bc+b+1 + 1/bc+b+1 = bc+b+1/bc+b+1 = 1
=> ĐPCM
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Lời giải:
Dựa vào điều kiện $abc=1$ ta có:
\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+ca+c}=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{1+ca+c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab+ab.ca+ab.c}\)
\(=\frac{1}{ab+a+1}+\frac{a}{1+ab+a}+\frac{ab}{ab+a+1}=\frac{1+a+ab}{ab+a+1}=1\)
Ta có đpcm.
Ta có: \(a.b.c=1\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{abc.a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{1+ab+a}\)
\(=1.\)
\(\Rightarrow\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\left(đpcm\right).\)
Chúc bạn học tốt!
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
Ta có :
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{abc}{aabc+abc+ab}\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{1}{a+1+ab}\)
\(A=\dfrac{a+ab+1}{ab+a+1}\)
\(\Rightarrow A=1\left(đpcm\right)\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
cho ba số a,b,c thỏa mãn a.b.c = 1 . CMR: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{abc+bc+b}=1\)
*Từ abc=1 => a;b;c khác 0
Khi đó : \(\frac{1}{ab+a+1}\) = \(\frac{1}{ab+a+1}\) .\(\frac{bc}{bc}\) = \(\frac{bc}{ab.bc+abc+bc}\) = \(\frac{bc}{abc.b+abc+bc}\) = \(\frac{bc}{bc+b+1}\)
(do abc=1)
*Do abc = 1 => \(\frac{1}{abc+bc+b}\) = \(\frac{1}{bc+b+1}\)
Khi đó : \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\)
= \(\frac{bc}{bc+b+1}\) + \(\frac{b}{bc+b+1}\) +\(\frac{1}{bc+b+1}\)
= \(\frac{bc+b+1}{bc+b+1}\) = 1
Hay \(\frac{1}{ab+a+1}\) + \(\frac{b}{bc+b+1}\) + \(\frac{1}{abc+bc+b}\) = 1 (đpcm).
*Chú ý : Đây là phương pháp thế số bởi chữ !
\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)
\(=\frac{1}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{1.a}{a.\left(1+bc+b\right)}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{a}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)