K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022

 

 

28 tháng 7 2016

a+b+c=0

=> ( a+ b+c ) ^2 =0 ( rồi phân tích chuyển dấu )

=> a^2+ b^2+ c^2 = - ( 2ab+ 2ac+ 2bc) 

=> ( a ^2 + b^2 + c^2 ) ^2 = ( 2ab+ 2ac+ 2bc) ^2

. Rồi bạn tách tiếp nghen, bạn có làm được tiếp chứ? Có gì cứ hỏi tớ tiếp nhé

26 tháng 7 2019

\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)

Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)

\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)

\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)

\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)

cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link 

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

21 tháng 3 2020

Cho a = b = c = 1 thử xem:P

6 tháng 12 2015

Ta có a+b+c=0=>a2+b2+c2+2ab+2bc+2ca=0

=>a2+b2+c2=-2(ab+bc+ca)=>(a2+b2+c2)2=(-2ab-2bc-2ca)2

=>a4+b4+c4+2a2b2+2b2c2+2c2a2=4a2b2+4b2c2+4c2a2+4abc(a+b+c)=4a2b2+4b2c2+4c2a2(Do a+b+c=0)

=>a4+b4+c4= 2(a2b2+b2c2​+c2a2)

NV
5 tháng 5 2021

a.

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)

30 tháng 8 2019

k nha new dung