Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thôi
ta có:
\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c};\frac{b}{1+c^2d}=b-\frac{bc^2d}{1+c^2d};\frac{c}{1+d^2a}=c-\frac{cd^2a}{1+d^2a};\frac{d}{1+a^2b}=d-\frac{da^2b}{1+a^2b}\)
áp dụng cauchy ta có:
\(b^2c+1\ge2b\sqrt{c};c^2d+1\ge2c\sqrt{d};d^2a+1\ge2d\sqrt{a};a^2b+1\ge2a\sqrt{b}\)
\(=4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\)
theo ông cauchy thì
\(ab\sqrt{c}\le\frac{ab\left(c+1\right)}{2};bc\sqrt{d}\le\frac{bc\left(d+1\right)}{2};cd\sqrt{a}\le\frac{cd\left(a+1\right)}{2};da\sqrt{b}\le\frac{da\left(b+1\right)}{2}\)
\(\Rightarrow4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\ge4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\)
vẫn là ông cauchy nói là \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)
\(ab+bc+cd+da=\left(b+d\right)\left(a+c\right)\le\frac{\left(a+b+c+d\right)^2}{4}=4\)
\(\Rightarrow4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\ge4-\frac{4+4}{4}=2\)
\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=d=1
\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge\left(a+b+c+d\right)-\frac{ab^2c}{2b\sqrt{c}}-\frac{bc^2d}{2c\sqrt{d}}-\frac{cd^2a}{2d\sqrt{a}}-\frac{da^2b}{2a\sqrt{b}}\)
Giải:
Áp dụng BĐT AM - GM ta có:
\(\dfrac{a}{1+b^2c}=a-\dfrac{ab^2c}{1+b^2c}\ge a-\dfrac{ab^2c}{2b\sqrt{c}}\) \(=a-\dfrac{ab\sqrt{c}}{2}\)
\(\ge a-\dfrac{b\sqrt{a.ac}}{2}\ge a-\dfrac{b\left(a+ac\right)}{4}\) \(\ge a-\dfrac{1}{4}\left(ab+abc\right)\)
\(\Rightarrow\dfrac{a}{1+b^2c}\ge a-\dfrac{1}{4}\left(ab+abc\right).\) Tượng tự ta cũng có:
\(\dfrac{b}{1+c^2d}\ge b-\dfrac{1}{4}\left(bc+bcd\right);\dfrac{c}{1+d^2a}\ge c-\dfrac{1}{4}\left(cd+cda\right);\dfrac{d}{1+a^2b}\ge d-\dfrac{1}{4}\left(da+dab\right)\)
Cộng theo vế 4 BĐT trên ta được:
\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)
\(\ge a+b+c+d-\dfrac{1}{4}\)\(\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)
Lại áp dụng BĐT AM - GM ta có:
\(ab+bc+cd+da\) \(\le\dfrac{1}{4}\left(a+b+c+d\right)^2=4\)
\(abc+bcd+cda+dab\) \(\le\dfrac{1}{16}\left(a+b+c+d\right)^3=4\)
Do đó:
\(\dfrac{a}{1+b^2c}+\dfrac{b}{1+c^2d}+\dfrac{c}{1+d^2a}+\dfrac{d}{1+a^2b}\)
\(\ge a+b+c+d-2=2\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=d=1\)
Bài 2:
Áp dụng Bdt Cauchy-Schwarz dạng engel, ta có
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà theo Bđt cosi
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\)
\(=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
a/ Đề sai, đề đúng phải là \(p=\frac{a+b+c}{2}\)
b/ \(\Leftrightarrow\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)
\(VT=1-\frac{a^2b}{1+1+a^2b}+1-\frac{b^2c}{1+1+b^2c}+1-\frac{c^2a}{1+1+c^2a}\)
\(VT\ge3-\left(\frac{a^2b}{3\sqrt[3]{a^2b}}+\frac{b^2c}{3\sqrt[3]{b^2c}}+\frac{c^2a}{3\sqrt[3]{c^2a}}\right)\)
\(VT\ge3-\frac{1}{9}\left(3\sqrt[3]{a^2.ab.ab}+3\sqrt[3]{b^2.bc.bc}+3\sqrt[3]{c^2.ca.ca}\right)\)
\(VT\ge3-\frac{1}{9}\left(a^2+2ab+b^2+2bc+c^2+2ca\right)\)
\(VT\ge3-\frac{1}{9}\left(a+b+c\right)^2=2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(N=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\)
\(\ge a-\frac{ab^2c}{2b\sqrt{c}}=a-\frac{ab\sqrt{c}}{2}=a-\frac{b\sqrt{ac}\sqrt{a}}{2}\)
\(\ge a-\frac{b\left(ac+c\right)}{4}\).Suy ra \(\frac{a}{1+b^2c}\ge a-\frac{1}{4}\cdot\left(ab+abc\right)\)
Tương tự ta có:
\(\frac{b}{a+c^2d}\ge b-\frac{1}{4}\left(bc+bcd\right)\)
\(\frac{c}{1+d^2a}\ge c-\frac{1}{4}\left(cd+cda\right)\)
\(\frac{d}{1+a^2b}\ge d-\frac{1}{4}\left(da+dab\right)\)
Do đó: \(S=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
\(\ge a+b+c+d-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)
\(=4-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)
Ta có:
\(ab+bc+cd+da\le\frac{1}{4}\left(a+b+c+d\right)^2=4\)
\(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)
nên \(S\ge4-\frac{1}{4}\cdot\left(4+4\right)=2\)(Đpcm)
Dấu = khi \(a=b=c=d=1\)
tick đê =))