K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Giả sử \(c=min\left\{a,b,c\right\}\)\(VT-VP=(a-b)^2(2a^2bc+2ab^2c-abc^2+3ac^3+3bc^3)+(a-c) (b-c) (3 a^2b^2+2 a^2b c+2ab^2c+2abc^2)\ge0\)

25 tháng 2 2020

Ủa nãy trong tin nhắn anh nhớ có điều kiện a, b, c > 0 mà? Sao tự nhiên xóa mất-_-

28 tháng 4 2020

Cm \(3\left(a^2b+b^2c+c^2a\right)\left(a^2c+b^2a+c^2b\right)\ge abc\left(a+b+c\right)^3\)

Do 2 vế BĐT đồng bậc nên ta chuẩn hóa \(a+b+c=3\)

BĐT <=> \(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3\right)+a^2b^2c^2\left(a+b+c\right)\right]\ge27abc\)

<=>\(3\left[abc\left(a^3+b^3+c^3\right)+\left(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\right)\right]\ge27abc\)

Áp dụng BĐT Schur ta có:

\(a^3b^3+b^3c^3+a^3c^3+3a^2b^2c^2\ge ab^2c\left(ab+bc\right)+a^2bc\left(ab+ac\right)+abc^2\left(ac+bc\right)\)

Khi đó BĐT 

<=>\(3\left(a^3+b^3+c^3\right)+3a^2\left(b+c\right)+3b^2\left(a+c\right)+3c^2\left(a+b\right)\ge27\)

<=> \(3\left(a^3+b^3+c^3\right)+3a^2\left(3-a\right)+3b^2\left(3-b\right)+3c^2\left(3-c\right)\ge27\)

<=> \(a^2+b^2+c^2\ge3\) luôn đúng do \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=3\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c

26 tháng 5 2020

Bài 2 

Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

=> \(VT\ge\frac{|a+1-b|+|b+1-c|+|c+1-a|}{\sqrt{2}}\)

Áp dụng BĐT \(|x|+|y|+|z|\ge|x+y+z|\)

=> \(VT\ge\frac{|a+1-b+b+1-c+c+1-a|}{\sqrt{2}}=\frac{3}{\sqrt{2}}\)(ĐPCM)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

26 tháng 5 2020

ai mà biết được???????????????

26 tháng 5 2020

Bn ko biết thì đừng có đăng linh tinh nhé hoktok 😋😋😋😋😋😋😋😋😋

12 tháng 4 2020

Với dữ kiện đề bài \(a+b+c+2=abc\) ta đặt:

\(a=\frac{y+z}{x};b=\frac{x+z}{y};c=\frac{x+y}{z}\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{3}{4}\)

BĐT<=> \(\sqrt{\frac{a^2-1}{a^2}}+\sqrt{\frac{b^2-1}{b^2}}+\sqrt{\frac{c^2-1}{c^2}}\le\frac{3\sqrt{3}}{2}\)

<=> \(\sqrt{1-\frac{1}{a^2}}+\sqrt{1-\frac{1}{b^2}}+\sqrt{1-\frac{1}{c^2}}\le\frac{3\sqrt{3}}{2}\)

Áp dụng BĐT buniacoxki cho VT ta có :

\(VT\le\sqrt{3.\left(3-\frac{1}{a^2}-\frac{1}{b^2}-\frac{1}{c^2}\right)}\le\sqrt{3\left(3-\frac{3}{4}\right)}=\frac{3\sqrt{3}}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=2

12 tháng 4 2020

Khó quáaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

28 tháng 8 2017

ta co \(\frac{a}{1+b^2c}=\frac{a\left(1+b^2c\right)-ab^2c}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\ge a-\frac{ab\sqrt{c}}{2}\)

=>\(\frac{a}{1+b^2c}\ge a-\frac{b\sqrt{a.ac}}{2}\ge a-\frac{b\left(a+ac\right)}{4}\)

cmtt=>dpcm

6 tháng 10 2017

\(A=\dfrac{a^3}{b+c+d}+\dfrac{b^3}{a+c+d}+\dfrac{c^3}{a+b+d}+\dfrac{d^3}{a+b+c}\)

\(=\dfrac{a^4}{ab+ac+ad}+\dfrac{b^4}{ab+bc+bd}+\dfrac{c^4}{ac+bc+cd}+\dfrac{d^4}{ad+bd+cd}\)

\(\ge\dfrac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\) (bđt Cauchy Shwarz dạng Engel)

Cần chứng minh \(\dfrac{a^2+b^2+c^2+d^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\ge\dfrac{1}{3}\)

\(\Leftrightarrow3a^2+3b^2+3c^2+3d^2\ge2\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-d\right)^2+\left(b-c\right)^2+\left(c-d\right)^2\ge0\) *đúng*

Vậy ta có đpcm.

Dấu "=" xảy ra khi a = b = c = d

NV
23 tháng 8 2021

\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)

\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)

Tương tự và cộng lại:

\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)