Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Ta có:
- I là trung điểm của BC, nên AI là đường cao của tam giác ABC và cắt AB thành hai đoạn bằng nhau.
- IM vuông góc AB và IN vuông góc AC.
Vậy tứ giác AMIN là hình chữ nhật vì có hai cạnh đối nhau bằng nhau và các góc vuông.
b) Gọi D là điểm đối xứng với A qua I. Ta có:
- AD song song với IM (vì AD và IM đều vuông góc với AB).
- AD song song với IN (vì AD và IN đều vuông góc với AC).
- Tứ giác ABDC là hình bình hành vì có hai cạnh đối nhau song song.
c) Để hình chữ nhật AMIN là hình vuông, ta cần và đủ điều kiện sau:
- AM = AI (vì AMIN là hình chữ nhật).
- Góc AMI = 90 độ (vì AMIN là hình chữ nhật).
Với tam giác ABC vuông tại A, ta có:
- AM = AI nếu và chỉ nếu tam giác ABC là tam giác cân.
- Góc AMI = 90 độ nếu và chỉ nếu tam giác ABC là tam giác vuông cân.
Vậy điều kiện để hình chữ nhật AMIN là hình vuông là tam giác ABC là tam giác vuông cân.
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a: Xét tứ giác AEKF có
\(\widehat{AEK}=\widehat{AFK}=\widehat{FAE}=90^0\)
Do đó: AEKF là hình chữ nhật
b: Xét tứ giác AEFH có
AE//FH
AE=FH
Do đó: AEFH là hình bình hành
a) Xét tứ giác ADME có :
Góc A = 900 ( tam giác ABC vuông tại A )
Góc D = 900 ( MD vuông góc AB )
Góc E = 900 ( ME vuông góc AC )
Do đó tứ giác ADME là hình chữ nhật
b) Chứng minh đúng D, E là trung điểm của AB ; AC
Chứng minh đúng DE là đường trung bình của tam giác
ABC nên DE song song và \(DE=\frac{BC}{2}\)
Cho nên DE song song với BM và DE = BM
=> Tứ giác BDME là hình bình hành
c) Xét tứ giác AMCF có :
E là trung điểm MF ( vì M đối xứng với F qua E )
Mà E là trung điểm của AC ( cmt )
Nên tứ giác AMCF là hình bình hành
Ta có AC vuông góc MF ( vì ME vuông góc AC )
Do đó tứ giác AMCF là hình thoi
d) Chứng minh đúng tứ giác ABNE là hình chữ nhật
Gọi O là giao điểm hai đường chéo AN và BE của hình chữ nhật ABNE
trong tam giác vuông BKE có KO là trung tuyến ứng với cạnh huyền BE
nên \(KO=\frac{BE}{2}\)
mà BE = AN ( đường chéo hình chữ nhật ) nên \(KO=\frac{AN}{2}\)
trong tam giác AKN có trung tuyến KO bằng nửa cạnh AN
nên tam giác AKN vuông tại A
Vậy AK vuông góc KN
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
a: Xét tứ giác AMKN có
\(\widehat{AMK}=\widehat{ANK}=\widehat{NAM}=90^0\)
Do đó: AMKN là hình chữ nhật