Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)
Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó
Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900
Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)
tỪ (*); (**) TA CÓ ĐPCM
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(AD\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\)(1)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)(cmt)
Do đó: ΔADE\(\sim\)ΔACB(c-g-c)
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)(hai góc tương ứng)
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
c: Xét ΔMAB có AH,BN.MK là các đường cao
nên AH,BN,MK đồng quy
Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. a) Chứng minh AH=DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh diện tích ABC = diện tích DEQP