K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BA^2=BH*BC

b: ΔACB vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

c: ΔAHB vuông tại H  có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H co HN vuông góc AC

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>ΔAMN đồng dạng vơi ΔACB

5 tháng 3 2022

a, Xét tam giác ABH và tam giác CBA ta có 

^B _ chung 

^AHB = ^BAC = 900

Vậy tam giác ABH ~ tam giác CBA (g.g) 

\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)(*) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=25cm\)

Lại có (*) => \(BH=\dfrac{AB^2}{BC}=9cm\)

=> CH = BC - BH = 16 cm 

c, Xét tam giác AHM và tam giác ABH có 

^A _ chung 

^AMH = ^AHB = 900

Vậy tam giác AHM ~ tam giác ABH (g.g) 

\(\dfrac{AH}{AB}=\dfrac{AM}{AH}\Rightarrow AH^2=AM.AB\)(1) 

Xét tam giác AHN và tam giác ACH có 

^A _ chung 

^ANH = ^AHC = 900

Vậy tam giác AHN ~ tam giác ACH (g.g) 

\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\Rightarrow AH^2=AN.AC\)(2) 

Từ (1) ; (2) ta có AM . AB = AN . AC 

a: Xét ΔABC vuông tại A có AH là đường cao

nên BA^2=BH*BC

b: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

=>AM/AC=AN/AB

=>ΔAMN đồng dạng với ΔACB

c: góc NAO+góc ANM

=góc OCA+góc AHM

=góc ACB+góc ABC=90 độ

=>MN vuông góc AO

a: Xét ΔANH vuông tại N và ΔAHB vuông tại H có

góc NAH chung

=>ΔANH đồng dạng với ΔAHB

b: ΔAHC vuông tại H có HM là đường cao

nên AM*AC=AH^2

ΔAHB vuông tại H có HN là đường cao

nên AN*AB=AH^2

=>AM*AC=AN*AB

=>AM/AB=AN/AC

c: AM/AB=AN/AC

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

=>góc NMC+góc NBC=180 độ

=>BNMC là tứ giác nội tiếp

=>góc INB=góc ICM

Xét ΔINB và ΔICM có

góc INB=góc ICM

góc I chung

=>ΔINB đồng dạng với ΔICM

=>IN/IC=IB/IM

=>IN*IM=IB*IC

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AH=15*20/25=12(cm)

c: ΔAHB vuông tại H có HM vuông góc AB

nên AM*AB=AH^2

ΔAHC vuông tại H có HN vuông góc AC

nên AN*AC=AH^2=AM*AB

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm