K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Tam giác ABC, trực tâm H. Chu vi của tam giác ABC bằng 60cm. Gọi M, N, Q lần lượt là 3 điểm trên HA, HB, HC sao cho
AM = 3MH, BN = 3NH, CQ = 3QH.
Tính chu vi của tam giác MNQ
\(\frac{MN}{AB}=\frac{HM}{HA}=\frac{1}{4}\)
\(\frac{NQ}{BC}=\frac{HN}{NB}=\frac{1}{4}\)
\(\frac{QM}{AC}=\frac{HQ}{HC}=\frac{1}{4}\)
(MN+NQ+QM)=(AB+BC+AC)/4=\(\frac{60}{4}\)=15

23 tháng 7 2018

B

Theo bài ra, ta thấy: AM = 3 MH nên AH = 4 MH 

                              BN = 3 NH nên BH = 4 NH

                              CQ = 3 QH nên CH = 4 QH

Suy ra: MH/AH = NH/BH (=1/4)

Do đó: MN song song với AB(định lí Ta-lét đảo)

MN /AB = MH/AH =1/4

Tương tự : NQ/BC = NH/BH =1/4 và MQ/AC = HQ/CH =1/4

Vì thế: MN/AB =NQ/BC = MQ/AC =1/4

Nên tam giác MNQ đồng dạng với tam giác ABC(c.c.c)

Tỉ số chu vi 2 tam giác = tỉ số 2 tam giác đồng dạng nên chu vi tam giác MNQ = 1/4 chu vi tam giác ABC

Vậy chu vi tam giác MNQ là 60:4 =15(cm)

14 tháng 10 2016

Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. M, N, P,Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng: AEHF là hình chữ nhật

2 tháng 8 2019

A B C E D F H I G

a) Qua H kẻ HG//AB  cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.

=> HI vuông BH ; CH vuông HG

và AIHG là hình bình hành

Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)

Xét tam giác CHG vuông tại H => CH<CG  

=> CH+BH + AH< BI+CG +AH 

Ta lại có AH <AI+IH (  bất đẳng thức trong tam giác AIH)

mà IH=AG ( AIHG là hình bình hành theo cách vẽ )

=> AH < AI+AG 

Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC

b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC) 

Chứng minh tương tự như câu a.

Ta có: \(AB+AC>HA+HB+HC\)

\(BC+AC>HA+HB+HC\)

\(AB+BC>HA+HB+HC\)

Cộng theo vế ta có:

\(2AB+2AC+2BC>3HA+3HB+3HC\)

=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)

=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)

19 tháng 7 2015

a) Tam giascABC có D là trung điểm AB; E là trung điểm AC nên DE là đường trung bình của tam giác ABC

=> DE//BC; DE=1/2BC

ta có BF=FC=1/2BC(gt) => BF=DE=1/2BC

Tứ giác BDEF có DE//BF; DE=DE nên BDEF là hình bình hành.

b) Vì BDEF là Hình bình hành nên góc DEF=DBF

mà DE//BF nên góc EDK=DBK(so le trong)

Từ 2 điều này suy ra góc EDK=DEF.

Tứ giác DEFK có KF//DE(DE//BC) nên DEFK là hình thang, lại có hai góc kề đáy EDK=DEF nên DEFK là hình thang cân.

c)

  • Tam giác ABH có D là trung điểm AB;N là trung điểm BH nên DN là đường trung bình của tam giác ABH

=> DN=1/2AH;

DN//AH mà AH vuông góc với BC nên DN cũng vuông góc với BC

Vì DN vuông góc với BC mà DE//BC(cmt) => DE vuông góc với DN. hay góc D=90 độ

            Tam giác AHC có E là trung điểm AC; P là trung điểm HC nên EP là đường trung bình của tam giác AHC

=> EP//AH; EP=1/2AH.

Tứ giác DEPN có DN//EP( cùng song song với AH); DN=EP(=1/2AH) nên DEPN là hình bình hành.

Lại có góc D= 90 độ(cmt) nên DEPN là hình chữ nhật

=> Hai đường chéo DP và NE cắt nhau và bằng nhau (1).

  • Tam giác ABH có D là trung điểm AB; M là trung điểm AH nên DM là đường trung bình của tam giác ABH

=> DM=1/2BH;

DM//BH mà BH vuông góc với AC( H là trực tâm của tam giác ABC)

=>DM vuông góc AC. hay Góc M = 90 độ

Lại có  M là trung điểm AH; P là trung điểm HC nên MP là đuognừ trung bình của tam giác AHC. => MP//AC

từ hai điều này suy ra DM vuông góc MP.

Tam giác BHC có P là trung điểm HC; F là trung điểm BC nên PF là đuognừ trung bình của tam giác BHC => PF//BH; PF=1/2BH

Tứ giác DMPF có DM//PF(cùng song song với BH); DM=PF(=1/2 BH) nên DMPF là hình bình hành

lại có Góc M bằng 90 độ nên DMPF là hình chữ nhật.

=> hai đuognừ chéo DP và MF cắt nhau và bằng nhau(2).

Từ (1) và (2) suy ra MF,NE,PD đồng quy và bằng nhau

28 tháng 2 2020

bài 3

A B C D E M N K K' x I O

Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )

Ta sẽ chứng minh K' \(\equiv\)

Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I 

dễ thấy O là trung điểm MN

do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)

\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N

\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)

Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là  đường phân giác \(\widehat{K'NE}\)( 1 )

mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng

28 tháng 2 2020

A B C H M E F D

Trên tia đối tia HC lấy D sao cho HD = HC

Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành

\(\Rightarrow\)DE // CF 

\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH

\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)

Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình 

\(\Rightarrow\)MH // BD

\(\Rightarrow\)MH \(\perp EF\)

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành