Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Mà \(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\); \(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\); \(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2\)
\(\Leftrightarrow S\ge2+2+2\)
\(\Leftrightarrow S\ge6\left(đpcm\right)\)
a) Vì a > b
=> a.n > b.n
=> a.n + a.b > b.n + a.b
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n ( đpcm)
Câu b và c lm tương tự
Bài làm:
Ta có: Áp dụng bất đẳng thức Cauchy dạng cộng mẫu (bạn có thể tham khảo các tài liệu để biết cách chứng minh)
\(\Rightarrow\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{3^2}{3+a+b+c}\ge\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: \(\frac{1}{1+a}=\frac{1}{1+b}=\frac{1}{1+c}\Rightarrow a=b=c=1\)
Vậy Min biểu thức bằng \(\frac{3}{2}\)khi \(a=b=c=1\)
Chúc bạn học tốt!
Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)
Ta có : \(a.\left(b+m\right)=a.b+a.m\)
\(b.\left(a+m\right)=a.b+b.m\)
mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)
\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có : \(a< b\Rightarrow am< bm\)
\(\Rightarrow ab+am< ab+bm\)
\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Vì a < b => am < bm
=> \(ab+am
phép chia cũng là 1 phân số vì dấu __ là dấu :
so sánh 2 phân số \(\frac{a}{b}\) và \(\frac{a}{c}\)
tức là ta đã so sánh biểu thức a:b và a:c
và ta đã biết : trong 1 hép chia nếu nếu số chia càng lớn thì thương càng lớn .
Mà b>c
=> a:b<a:c <=> \(\frac{a}{b}\)<\(\frac{a}{c}\)
từ đó ta có quy tắc:
nếu 2 phân số có cùng tử , cùng là phân số dương hoặc âm nếu phân số nào có mẫu lớn hơn tì bé hơn .
nếu a,b,c >0 và b>c thì\(\frac{a}{b}\)>\(\frac{a}{c}\)
=>là vô lý
\(\frac{a}{b}< \frac{a+n}{b+n}\) \(\left(1\right)\)
\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Leftrightarrow ab+an< ab+bn\)
\(\Leftrightarrow an< bn\)
\(Do.a< b\)nên an<bn\(\Rightarrow\)(1)
\(\frac{a}{b}>\frac{a+n}{b+n}\)\(\left(2\right)\)
\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)
\(\Leftrightarrow ab+an>ab+bn\)
\(\Leftrightarrow an>bn\)
Do a>b nên \(\Rightarrow\)(2)