K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

\(\frac{a}{b}< \frac{a+n}{b+n}\) \(\left(1\right)\)

\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow ab+an< ab+bn\)

\(\Leftrightarrow an< bn\)

\(Do.a< b\)nên an<bn\(\Rightarrow\)(1)

\(\frac{a}{b}>\frac{a+n}{b+n}\)\(\left(2\right)\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Leftrightarrow ab+an>ab+bn\)

\(\Leftrightarrow an>bn\)

Do a>b nên \(\Rightarrow\)(2)

25 tháng 3 2019

                       Giải

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)       

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Mà \(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)\(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\)\(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2\)

\(\Leftrightarrow S\ge2+2+2\)

\(\Leftrightarrow S\ge6\left(đpcm\right)\)

25 tháng 3 2019

Bui Huyen            

Mình quen đặt S rồi nên sửa lại N nhé.

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

23 tháng 6 2020

Bài làm:

Ta có: Áp dụng bất đẳng thức Cauchy dạng cộng mẫu (bạn có thể tham khảo các tài liệu để biết cách chứng minh) 

\(\Rightarrow\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{3^2}{3+a+b+c}\ge\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(\frac{1}{1+a}=\frac{1}{1+b}=\frac{1}{1+c}\Rightarrow a=b=c=1\)

Vậy Min biểu thức bằng \(\frac{3}{2}\)khi \(a=b=c=1\)

Chúc bạn học tốt!

25 tháng 2 2018

Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)

Ta có : \(a.\left(b+m\right)=a.b+a.m\)

           \(b.\left(a+m\right)=a.b+b.m\)

mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)

\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)

\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)

3 tháng 6 2020

tích chéo có phải nhanh hơn ko bạn [ mạnh vũ cường ]

Ta có : \(a< b\Rightarrow am< bm\)

\(\Rightarrow ab+am< ab+bm\)

\(\Rightarrow a\left(b+m\right)< b\left(a+m\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)

24 tháng 7 2015

\(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)

Vì a < b => am < bm 

=> \(ab+am

24 tháng 7 2015

bé hơn

 

 

 

19 tháng 2 2017

phép chia cũng là 1 phân số vì dấu __ là dấu :

so sánh 2 phân số \(\frac{a}{b}\)\(\frac{a}{c}\)

tức là ta đã so sánh biểu thức a:b và a:c

và ta đã biết : trong 1 hép chia nếu nếu số chia càng lớn thì thương càng lớn .

Mà b>c

=> a:b<a:c <=> \(\frac{a}{b}\)<\(\frac{a}{c}\)

từ đó ta có quy tắc:

nếu 2 phân số có cùng tử , cùng là phân số dương hoặc âm nếu phân số nào có mẫu lớn hơn tì bé hơn .

nếu a,b,c >0 và b>c thì\(\frac{a}{b}\)>\(\frac{a}{c}\)

=>là vô lý