Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Biến đổi vế 2 :
\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )
\(=\frac{bc+ac+ab}{abc}\)
Ta có :
\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)
\(=\frac{abc+abc+abc}{abc}\)\(=3\)
→ ( a + b + c ) = 3
Ta có : 3 . 3 = 9 => ĐPCM
phép chia cũng là 1 phân số vì dấu __ là dấu :
so sánh 2 phân số \(\frac{a}{b}\) và \(\frac{a}{c}\)
tức là ta đã so sánh biểu thức a:b và a:c
và ta đã biết : trong 1 hép chia nếu nếu số chia càng lớn thì thương càng lớn .
Mà b>c
=> a:b<a:c <=> \(\frac{a}{b}\)<\(\frac{a}{c}\)
từ đó ta có quy tắc:
nếu 2 phân số có cùng tử , cùng là phân số dương hoặc âm nếu phân số nào có mẫu lớn hơn tì bé hơn .
nếu a,b,c >0 và b>c thì\(\frac{a}{b}\)>\(\frac{a}{c}\)
=>là vô lý
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
Áp dụng \(\frac{x}{y}>\frac{x}{y+m}\) ( x,y,m là số tự nhiên lớn hơn 0)
Ta có \(\frac{a}{a+b}>\frac{a}{a+b+c}\forall a,b,c dương\)
\(\frac{b}{b+c}>\frac{b}{b+c+a}\forall a,b,c dương\)
\(\frac{c}{c+a}>\frac{c}{c+a+b}\forall a,b,c dương\)
=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)
=> \(A>\frac{a+b+c}{a+b+c}=1\)
Vậy A>1
Ta có:
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)
\(\Rightarrow M>1\) (1)
Ta có:
\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)
\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow M< 2\) (2)
Từ (1) và (2) => 1 < M < 2
=> M không phải là một số nguyên dương (đpcm)
Giải
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Mà \(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\); \(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\); \(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2\)
\(\Leftrightarrow S\ge2+2+2\)
\(\Leftrightarrow S\ge6\left(đpcm\right)\)
Bui Huyen
Mình quen đặt S rồi nên sửa lại N nhé.