K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0

mà a2+b2+c2>=0 =>2(ab+bc+ca)<=0

=>ab+bc+ca<=0

1 tháng 10 2023

theo đề

a/bc < 0 (a,b ∈ Q; a,b,c ≠ 0)

=> a và bc trái dấu ( vì a/bc < 0 nên phân số này có a là 1 số âm; b là 1 số dương).

=> a(bc) < 0

=> (ac)b < 0

=> ac và b trái dấu

=> a/bc < 0 (đpcm)

23 tháng 12 2015

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

1 tháng 3 2017

abc bằng 0

2 tháng 8 2019

1

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)

=> M ko là số tự nhiên

2

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)

3

\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)

\(\Rightarrow35x+35y=2010x-2010y\)

\(\Rightarrow35-2010x=2010y-35y\)

\(\Rightarrow-175x=-245y\)

\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\)

\(\Rightarrow x=7k;y=5k\)

\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)

\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)

Vậy \(x=7;y=5\)

2 tháng 8 2019

bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3* 

NV
13 tháng 11 2021

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)