Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html
\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)
\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)
\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)
\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)
Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)
\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
\(b,\) Không thể suy ra đẳng thức
kẻ AH vuông góc với BC
đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :
sin B = \(\frac{AH}{AB}\), sin C = \(\frac{AH}{AC}\)
do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)
suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)
tương tự \(\frac{a}{sinA}=\frac{b}{sinB}\)
vậy suy ra dpcm
cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá
Lời giải:
Kéo dài $OA$ cắt $(O)$ tại $D$
Do $AD$ là đường kính nên $ABD$ vuông tại $B$
\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)
Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)
Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)
Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)
a) Xét ΔABC vuông tại A có
\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)
Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)
\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)
\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)
Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)
b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
\(=2\cdot AB\cdot AC\cdot0\)
=0
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)
Kẻ AH⊥BC tại H, BK⊥AC tại K
Xét ΔAHB vuông tại H có
\(\sin\widehat{B}=\dfrac{AH}{AB}\)
Xét ΔAHC vuông tại H có
\(\sin\widehat{C}=\dfrac{AH}{AC}\)
Ta có: \(\dfrac{\sin\widehat{B}}{\sin\widehat{C}}=\dfrac{AH}{AB}\cdot\dfrac{AC}{AH}=\dfrac{AC}{AB}=\dfrac{b}{c}\)
\(\Leftrightarrow\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)(1)
Xét ΔABK vuông tại K có
\(\sin\widehat{A}=\dfrac{BK}{AB}\)
Xét ΔBCK vuông tại K có
\(\sin\widehat{C}=\dfrac{BK}{BC}\)
Ta có: \(\dfrac{\sin\widehat{A}}{\sin\widehat{C}}=\dfrac{BK}{AB}\cdot\dfrac{BC}{BK}=\dfrac{BC}{AB}=\dfrac{a}{c}\)
\(\Leftrightarrow\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{\sin\widehat{A}}=\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)