K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

bạn áp dụng hệ thức lượng trong tam giác vuông nha

7 tháng 11 2017

Phải là áp dụng tỉ số lượng giác của góc nhọn chứ bạn?

17 tháng 8 2018

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

17 tháng 8 2018

bạn ơi mình nhấn không được

28 tháng 6 2021

Ta có : \(S_{ABC}=\dfrac{1}{2}bc.sinA=\dfrac{1}{2}acSinB=\dfrac{1}{2}abSinC\)

\(\Rightarrow bc.sinA=acSinB=abSinC\)

- Lấy abc chia cho cả 3 vế ta được ĐPCM

Kẻ AH⊥BC

Xét ΔABH vuông tại H có \(AH=c\cdot\sin\widehat{B}\)

Xét ΔACH vuông tại H có \(AH=b\cdot\sin\widehat{C}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{AH}{\sin\widehat{B}}\\b=\dfrac{AH}{\sin\widehat{C}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AH}{c}\\\sin\widehat{C}=\dfrac{AH}{b}\end{matrix}\right.\Leftrightarrow\dfrac{c}{\sin\widehat{C}}=\dfrac{b}{\sin\widehat{B}}\)(1)

Kẻ BK⊥AC

Cm tương tự, ta được: \(\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)

Từ (1), (2) suy ra đpcm

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

16 tháng 9 2021

\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)

\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)

\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)

\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)

Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)

\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

\(b,\) Không thể suy ra đẳng thức

16 tháng 9 2021

Vì sao không thể suy ra hằng đẳng thức  bạn

20 tháng 11 2017

Bạn tự vẽ hình nhé

a,Kẻ BK vuông góc với AC, đặt BK = h

tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)

tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)

Từ (1) và (2) => a/sin A = c/sin C

CMTT có b/sinB = c/sin C

=> dpcm

b, có SABC = (h.b)/2

mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)

CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)

=> đpcm

Kẻ AH vuông góc BC

Xét ΔAHB vuông tại H có sin B=AH/AB

=>AH=c*sin B

Xét ΔAHC vuông tại H có sin C=AH/AC

=>AH=AC*sin C=b*sin C

=>c*sin B=b*sin C

=>c/sinC=b/sinB

Kẻ BK vuông góc AC

Xét ΔABK vuông tại K có

sin A=BK/AB

=>BK=c*sinA

Xét ΔBKC vuông tại K có 

sin C=BK/BC

=>BK/a=sin C

=>BK=a*sin C

=>c*sin A=a*sin C

=>c/sin C=a/sin A

=>a/sin A=b/sinB=c/sinC

8 tháng 11 2017

Vào câu hỏi tương tự có đó 

8 tháng 11 2017

Câu hỏi của lê thị thu huyền - Toán lớp 9 - Học toán với OnlineMath