K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 12 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)

\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)

- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)

- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)

- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)

Vậy \(P=0\)