K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

26 tháng 5 2018

tích đi rồi ta làm

26 tháng 5 2018

tích đi bạn

NV
5 tháng 5 2020

\(VT=\frac{4}{2.2\sqrt{a+b}}+\frac{4}{2.2\sqrt{b+c}}+\frac{4}{2.2\sqrt{c+a}}\)

\(VT\ge\frac{4}{a+b+4}+\frac{4}{b+c+4}+\frac{4}{c+a+4}\)

\(VT\ge\frac{36}{a+b+4+b+c+4+c+a+4}=\frac{36}{24}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

mik thấy có gì đó sai sai \"leu\"

\n
13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

17 tháng 6 2017

\(\left(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\right)^2\)

\(\le3\left(1-a+1-b+1-c\right)=3.\left(3-1\right)=6\)

\(\Rightarrow\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\le\sqrt{6}\)

12 tháng 12 2017

áp dụng bất đẳng thức phụ gì bạn ơi

30 tháng 5 2018

Sử dụng BĐT Bunhiacopxki ta có: 

\(\sqrt{a^2+b^2c^2}=\sqrt{a^2\left(a^2+b^2+c^2\right)+b^2c^2}=\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}\ge\sqrt{\left(a^2+bc\right)^2}=a^2+bc\)

Tương tự: \(\sqrt{b^2+c^2a^2}\ge b^2+ca\)

                   \(\sqrt{c^2+a^2b^2}\ge c^2+ab\)

Cộng mại ta có: \(VT\ge ab+bc+ca+1\)

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

NV
10 tháng 3 2023

\(\dfrac{a}{\sqrt{b^3+1}}=\dfrac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\ge\dfrac{2a}{b+1+b^2-b+1}=\dfrac{2a}{b^2+2}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{2a}{b^2+2}+\dfrac{2b}{c^2+2}+\dfrac{2c}{a^2+2}=a-\dfrac{ab^2}{b^2+2}+b-\dfrac{bc^2}{c^2+2}+c-\dfrac{ca^2}{a^2+2}\)

\(VT\ge6-\left(\dfrac{ab^2}{b^2+2}+\dfrac{bc^2}{c^2+2}+\dfrac{ca^2}{c^2+2}\right)\)

Ta có:

\(\dfrac{ab^2}{b^2+2}=\dfrac{2ab^2}{2b^2+4}=\dfrac{2ab^2}{b^2+b^2+4}\le\dfrac{2ab^2}{3\sqrt[3]{4b^4}}=\dfrac{a}{3}\sqrt[3]{2b^2}=\dfrac{a}{3}\sqrt[3]{2.b.b}\le\dfrac{a}{9}\left(2+b+b\right)\)

Tương tự và cộng lại:

\(VT\ge6-\left(\dfrac{2a}{9}\left(b+1\right)+\dfrac{2b}{9}\left(c+1\right)+\dfrac{2c}{9}\left(a+1\right)\right)\)

\(=6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{9}\left(ab+bc+ca\right)\ge6-\dfrac{2}{9}\left(a+b+c\right)-\dfrac{2}{27}\left(a+b+c\right)^2=2\)

Dấu "=" xảy ra khi \(a=b=c=1\)