K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2016

  ta co(:a+b)/c+(b+c)/a+(a+c)/b=a/c+c/a+a/b+b... 
theo bdt cauchy,ta co 
a/c+c/a>=2 
b/c+c/b>=2 
a/b+b/a>=2 
vay a/c+a/b+b/a+b/c+c/a+c/b>=6(dpcm) 
dau "="say ra khi a=b=c=1

NV
9 tháng 8 2021

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

NV
21 tháng 3 2022

Ta có:

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

\(\ge2a+2b+2c+2ab+2bc+2ca=12\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(P\ge a^2+b^2+c^2\ge3\)

\(P_{min}=3\) khi \(a=b=c=1\)

25 tháng 6 2023

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

25 tháng 6 2023

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

12 tháng 2 2022

Giúp mình câu này với ah.

 

2 tháng 7 2021

\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)

áp dụng BDT CAUCHY SCHAWRZ

\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)

\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)

5 tháng 7 2021

cái chỗ bđt cauchy là bđt gì bạn có thể ghi cụ thể nó ra được ko ạ 

 

12 tháng 5 2018

Ta có :

\(\sqrt{a +b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

<=> \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le6\)

<=> \(2\left(a+b+c\right)+2\sqrt{a+b}\sqrt{b+c}+2\sqrt{c+a}\sqrt{b+c}+2\sqrt{b+c}\sqrt{c+a}\le6\)

<=> \(\sqrt{a+b}\sqrt{b+c}+\sqrt{c+a}\sqrt{b+c}+\sqrt{b+c}\sqrt{c+a}\le2\)   (a)

Đặt \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\Rightarrow x+y+z=2\left(a+b+c\right)=2\)

Suy ra 

(a) <=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le2\)

Ta có bất đẳng thức phụ sau : Với x,y,z là các số dương thì

\(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)  (*)

Chứng minh : Nhân 2 cho 2 vế 

(*) <=> \(2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\le2x+2y+2z\)

<=>  \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Vậy \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

Suy ra \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z=2\)

Vậy Với a + b + c = 1 thì \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Đẳng thức xảy ra <=> x = b = c = \(\frac{1}{3}\)

7 tháng 9 2021

\(\dfrac{bc}{a+b+c+a}\le\dfrac{bc}{4}\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\ \dfrac{ac}{b+c+a+b}\le\dfrac{ac}{4}\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)\\ \dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{a+b}\left(\dfrac{bc}{4}+\dfrac{ac}{4}\right)+\dfrac{1}{a+c}\left(\dfrac{bc}{4}+\dfrac{ab}{4}\right)+\dfrac{1}{b+c}\left(\dfrac{ac}{4}+\dfrac{ab}{4}\right)\\ =\dfrac{1}{a+b}\cdot\dfrac{c\left(a+b\right)}{4}+\dfrac{1}{a+c}\cdot\dfrac{b\left(a+c\right)}{4}+\dfrac{1}{b+c}\cdot\dfrac{a\left(b+c\right)}{4}\\ =\dfrac{c}{4}+\dfrac{b}{4}+\dfrac{a}{4}\\ =\dfrac{a+b+c}{4}\left(đfcm\right)\)

31 tháng 7 2021

Giúp mình với ạ TT!!!

NV
18 tháng 9 2021

a.

\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)

Ta có:

\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)

b.

\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)

\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)