Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:
\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)
\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)
Ta có đpcm.
Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
Áp dụng bất đẳng thức Cauchy-Schwarz ta có:
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\)
\(\Leftrightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge a+\sqrt{bc}\)
Do đó \(\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{a}}{\left(c+a\right)\left(c+b\right)}+\frac{bc}{\left(c+a\right)\left(c+b\right)}\left(1\right)\)
Chứng minh tương tự ta được:
\(\hept{\begin{cases}\sqrt{\frac{bc}{\left(c+b\right)\left(a+b\right)}}=\frac{\sqrt{bc\left(c+b\right)\left(a+b\right)}}{\left(c+b\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}\left(2\right)\\\sqrt{\frac{ca}{\left(c+a\right)\left(a+b\right)}}=\frac{\sqrt{ca\left(c+a\right)\left(a+b\right)}}{\left(c+a\right)\left(a+b\right)}\ge\sqrt{abc}\frac{\sqrt{c}}{\left(c+a\right)\left(a+b\right)}+\frac{ab}{\left(a+c\right)\left(a+b\right)}\left(3\right)\end{cases}}\)
\(\Rightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\ge\)
\(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(a+c\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+\)\(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}\left(4\right)\)
Ta lại có: \(\frac{bc}{\left(a+c\right)\left(a+b\right)}+\frac{ac}{\left(c+b\right)\left(a+b\right)}+\frac{ab}{\left(c+b\right)\left(a+c\right)}+\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{bc\left(b+c\right)+ac\left(a+c\right)+ab\left(a+b\right)+2abc}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}\)
\(=\frac{bc\left(a+b+c\right)+ca\left(a+b+c\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{c\left(a+b+c\right)\left(b+a\right)+ab\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)
\(\left(4\right)\Leftrightarrow\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(c+b\right)\left(a+b\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)\(\ge\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó ta cần chứng minh \(\sqrt{abc}\left(\frac{\sqrt{a}}{\left(c+a\right)\left(a+b\right)}+\frac{\sqrt{b}}{\left(c+b\right)\left(a+b\right)}+\frac{\sqrt{c}}{\left(c+b\right)\left(a+c\right)}\right)+1-\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge1+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Điều này tương đương với \(\sqrt{a}\left(b+c\right)+\sqrt{b}\left(a+c\right)+\sqrt{c}\left(a+b\right)\ge6\sqrt{abc}\left(5\right)\)
Theo bất đẳng thức AM-GM thì (5) luôn đúng
Dấu "=" xảy ra khi (1);(2);(3) và (5) xảy ra dấu "=". điều này tương đương với a=b=c
Vậy ta có điều phải chứng minh
=))
ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng
Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.
Chứng minh BT trên =2 ạ, mình thiếu mất
Cảm ơn bạn nhưng mình giải được rồi ạ ^^
mk lớp 7
Dấu '' = '' không xảy ra
Áp dụng BĐT AM-GM:
Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:
\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)
\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)
Ta có đpcm.