K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

Giả sử (ab+bc+ca,abc)\(\ne1\)

Gọi d là ước chung của ab+bc+ca và abc\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(ab+bc+ca\right)⋮d\\abc⋮d\end{matrix}\right.\)

Ta có abc⋮d mà a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một nên sẽ có 3 trường hợp

TH1:a⋮d\(\Rightarrow ab+ac⋮\)d

Mà ab+ac+bc⋮d

Suy ra \(bc⋮\)d\(\Rightarrow\) b hoặc c chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)

TH2:b⋮d\(\Rightarrow ab+bc⋮\)d

Mà ab+ac+bc⋮d

Suy ra \(ac⋮\)d\(\Rightarrow\) a hoặc c chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)

TH3:c⋮d\(\Rightarrow bc+ac⋮\)d

Mà ab+ac+bc⋮d

Suy ra \(ab⋮\)d\(\Rightarrow\) a hoặc b chia hết cho d(trái với a,b,c là ba số tự nhiên nguyên tố cùng nhau từng đôi một)

Vậy điều giả sử sai

Vậy (ab+bc+ca,abc)=1

10 tháng 2 2018

 c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau

10 tháng 2 2018

Doan Thanh Phuong đề bài yêu cầu khác bạn ạ

AH
Akai Haruma
Giáo viên
31 tháng 10 2021

Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành

Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

CMR: $xyz=1$

-----------------------------

Có:

$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$

$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$

\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)

\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)

Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$

$\Rightarrow 1=\frac{1}{x^2y^2z^2}$

$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)

Ta có đpcm.

 

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.