K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2023

Theo giả thuyết ta có:

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\Leftrightarrow8+2\left(ab+bc+ca\right)-4\left(a+b+c\right)-abc\ge0\)

Cộng 2 vế cho \(a^2+b^2+c^2\) rồi sau đó rút gọn thì ta sẽ được:

\(\left(a+b+c\right)^2\ge a^2+b^2+c^2+abc+4\Leftrightarrow a^2+b^2+c^2+abc\le5\)

Do \(abc\ge0\Rightarrow a^2+b^2+c^2\le5\) 

NV
2 tháng 3 2023

Do \(0\le a;b;c\le2\) 

\(\Rightarrow abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)-4\left(a+b+c\right)+8\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow9-\left(a^2+b^2+c^2\right)\ge4\)

\(\Leftrightarrow a^2+b^2+c^2\le5\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị

18 tháng 7 2019

Ta có: \(0\le a;b;c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow\left(4-2a-2b+ab\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow8-4c-4a+2ac-4b+2bc+2ab-abc\ge0\)

\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ac\right)-abc\ge0\)

\(\Leftrightarrow-4+a^2+b^2+c^2+2\left(ab+bc+ac\right)-abc\ge a^2+b^2+c^2\)

\(\Leftrightarrow5\ge a^2+b^2+c^2+abc\ge a^2+b^2+c^2\Rightarrow a^2+b^2+c^2\le5\)\("="\Leftrightarrow\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị

15 tháng 2 2018

Câu 1) ngộ thế

26 tháng 7 2020

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

=> \(a^2-2ab+b^2+b^2-2ac+c^2+c^2-2ac+a^2\ge0\)

=> \(2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2bc\)

=> \(3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2bc\)

=> \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=100\)

=> \(a^2+b^2+c^2\ge\frac{100}{3}\)

Vậy ....

3 tháng 1 2019

Qúa dễ luôn 

Ta có : a x 2 + b x 2 + c x 2 \(\le\) 5 

           2 x ( a + b + c )        \(\le\)5

               a + b + c              \(\le\) 5/2 

               a + b + c              \(\le\) 2,5 

Mà theo đề bài : a + b + c không lớn hơn 2 ( có nghĩa là bé hơn 2 ) . Nên a + b + c phải luôn luôn bé hơn 2,5 ( vì 2 luôn bé hơn 2,5 ) 

Vậy : a x 2 + b x 2 + c x 2 \(\le\) 5 

27 tháng 3 2017

Bài 1:

Áp dụng BĐT AM-GM ta có: 

\(a+b\ge2\sqrt{ab}\)

\(9+ab\ge2\sqrt{9ab}=6\sqrt{ab}\)

\(\Rightarrow VT=a+b\ge\frac{2\sqrt{ab}\cdot6\sqrt{ab}}{9+ab}=\frac{12ab}{9+ab}=VP\)

Bài 2: 

a)\(\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}\ge a-\frac{2ab^2}{3\sqrt[3]{ab^4}}=a-\frac{2}{3}\sqrt[3]{a^2b^2}\)

\(BDT\Leftrightarrow\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\le3\)

Áp dụng BĐT AM-GM ta có: 

\(\sqrt[3]{b^2c^2}\le\frac{1}{3}\left(bc+b+c\right)\). Tương tự r` cộng theo vế ta có ĐPCM

b)\(\frac{a^2}{a+2b^3}=a-\frac{2ab^2}{a+2b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}b\sqrt[3]{a^2}\)

\(\ge a-\frac{2}{3}b\frac{\left(a+a+1\right)}{3}=a-\frac{2b}{9}-\frac{4ab}{9}\)

Vậy \(VT\ge a+b+c-\frac{2}{9}\left(a+b+c\right)-\frac{4}{9}\left(ab+bc+ca\right)\)

\(\ge\frac{7}{3}-\frac{4\left(a+b+c\right)^2}{27}=1=VP\)

28 tháng 3 2017

thắng đánh máy mấy bài này có mỏi tay ko