Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
\(Q=\frac{a^2+c^2-c^2}{a\left(c^2+a^2\right)}+\frac{b^2+a^2-a^2}{a\left(a^2+b^2\right)}+\frac{c^2+b^2-b^2}{b\left(b^2+c^2\right)}\)
\(Q=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{c^2+a^2}\right)\)
\(Q\ge3-\left(\frac{a}{2ab}+\frac{b}{2bc}+\frac{c}{2ca}\right)=3-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
\(Q_{min}=\frac{3}{2}\) khi \(a=b=c=1\)
Câu hỏi của Bùi Minh Quân - Toán lớp 9 - Học toán với OnlineMath
Ta có ; \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\)
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}=\frac{1}{b-c}+\frac{1}{a-b}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)
Cộng các vế lại với nhau được điều phải chứng minh.
A , B , C khác nhau thì bạn làm sao có thể cho : A-C = B đc ?
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=-\left(\frac{b-c}{\left(a-b\right)\left(c-a\right)}+\frac{c-a}{\left(b-c\right)\left(a-b\right)}+\frac{a-b}{\left(c-a\right)\left(b-c\right)}\right)\)
\(=2.\frac{-a^2-b^2-c^2+ab+bc+ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=2.\frac{\left(a-b\right)\left(b-c\right)+\left(b-c\right)\left(c-a\right)+\left(c-a\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{a-c-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)
Cộng theo vế 3 đẳng thức trên ta có đpcm.
Câu hỏi của Tăng Thiện Đạt - Toán lớp 8 - Học toán với OnlineMath