K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Tới đây thì đơn giản rồi nhé.

10 tháng 7 2017

a ) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+c^2+ac\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

=> a = - b hoặc b = - c hoặc a = - c

Xét a = - b ta có :

\(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\left(\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}\right)+\frac{1}{c^{2017}}=\frac{1}{c^{2017}}\) (1)

\(\frac{1}{a^{2017}+b^{2017}+c^{2017}}=\frac{1}{\left(-b^{2017}+b^{2017}\right)+c^{2017}}=\frac{1}{c^{2017}}\) (2)

Từ (1) ; (2) => \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

Tới đây bạn xét tiếp 2 TH b = - c và c = - a nữa ta có đpcm nha

b ) TQ :

Nếu a +b +c khác 0; a;b;c khác 0 ; \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

25 tháng 4 2017

Bạn vào đây tham khảo sau đó áp dụng vào bài của bạn nhé: Câu hỏi của Võ Khánh Lê - Toán lớp 0 | Học trực tuyến

25 tháng 5 2017

cho mik hỏi cách bạn dẫn link như trên kiểu ji vậy

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

31 tháng 7 2017

Thỏa mãn cái gì???

20 tháng 11 2023

Có:

\(a^3+b^3+c^3=3abc\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow (a+b)^3+c^3-3ab(a+b)-3abc=0\\\Leftrightarrow (a+b+c)^3-3(a+b)c(a+b+c)-3ab(a+b+c)=0\\\Leftrightarrow (a+b+c)[(a+b+c)^2-3(a+b)c-3ab]=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab)=0\\\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\\\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0(vì.a+b+c\ne0)\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(a-c\right)^2\ge0\forall a,c\end{matrix}\right.\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)

Thay \(a=b=c\) vào \(A\), ta được:

\(A=\dfrac{\left(2016+\dfrac{a}{a}\right)+\left(2016+\dfrac{b}{b}\right)+\left(2016+\dfrac{c}{c}\right)}{2017^3}\left(a,b,c\ne0\right)\)

\(=\dfrac{2016+1+2016+1+2016+1}{2017^3}\)

\(=\dfrac{2016\cdot3+1\cdot3}{2017^3}\)

\(=\dfrac{3\cdot\left(2016+1\right)}{2017^3}\)

\(=\dfrac{3}{2017^2}\)

Vậy: ...

NV
20 tháng 1 2019

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)

18 tháng 12 2017

máu biếng tới tận não:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\left[\left(a+b\right)^3+c^2\right]-ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=0\)

\(\Leftrightarrow\left(a+b+c\right)\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a-b=b-c=c-a\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Mà a,b,c >0

=> a = b = c

=> S = 3

\(\)

22 tháng 12 2019

sao mấy bn giỏi wá z

Mấy bài này mik chả hỉu j cả T^T