Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(=>\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(=>\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
\(=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=2\) hoặc \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=-2\)
Bộ thứ1 (x,y,z)=(6,8,10)
Bộ thứ 2 (x,y,z)=(-6;-8;-10)
b) Theo đề bài \(=>\frac{2b}{a}=\frac{2c}{b}=\frac{2d}{c}=\frac{2a}{d}=\frac{2.\left(a+b+c+d\right)}{a+b+c+d}=2\)
=>a=b=c=d
\(=>A=\frac{2011a-2010a}{2a}.4=\frac{a}{2a}.4=2\)( thay b,c,d=a, vì a=b=c=d)
Sửa lại đề \(CM\)\(\frac{a}{c}=\frac{\left(a+20112b\right)^2}{\left(b+2012c\right)^2}\)
Có \(a,b,c\in R;a,b,c\ne0\)và \(b^2=ac\)
Ta có \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Lại có \(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\Rightarrow\frac{a}{b}=\frac{a+2012b}{b+2012c}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\Rightarrow\frac{a^2}{ac}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
Hay \(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)
\(\frac{\left(a+2012.b\right)^2}{\left(b+2012.c\right)^2}=\frac{a^2+2.2012.a.b+2012^2.b^2}{b^2+2.2012.b.c+2012^2.c^2}=\frac{a^2+2.2012.a.b+2012^2.a.c}{a.c+2.2012.b.c+2012^2.c^2}=\)
\(=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)
Xem lại đề bài
\(b^2=ac\Rightarrow\frac{b}{c}=\frac{a}{b}=\frac{2010a}{2010b}=\frac{2011b}{2011c}=\frac{2010a+2011b}{2010b+2011c}\)
\(\Rightarrow\frac{b}{c}.\frac{a}{b}=\left(\frac{2010a+2011b}{2010b+2011c}\right).\left(\frac{2010a+2011b}{2010b+2011c}\right)\)
\(\Rightarrow\frac{a}{c}=\frac{\left(2010a+2011b\right)^2}{\left(2010b+2011c\right)^2}\)
sai de !!!!!!!!!!!!!!!!!