K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

a) Lỗi đánh máy à? ABC là tg vuông, trong khi BCE là tg nhọn => ko đồng dạng

b) Chứng minh 2 tg vuông AHE và BHD đồng dạng (g.g---góc vuông đã cho và 2 góc nhọn đối đỉnh)

=> tỉ số : HB/HA = HD/HE

Từ đó suy ra đẳng thức cần chứng minh ("nhân chéo")

c) Áp dụng đl Pi-ta-go tính AB

HC = ko biết (có thể liên quan đến câu a -- suy nghĩ riêng thôi)

a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có

góc C chung

Do đó: ΔADC\(\sim\)ΔBEC

b: Xét ΔHAE vuông tại E và ΔHBD vuông tại D có

\(\widehat{AHE}=\widehat{BHD}\)

Do đó: ΔHAE\(\sim\)ΔHBD

Suy ra: HA/HB=HE/HD

hay \(HA\cdot HD=HE\cdot HB\)

21 tháng 4 2020
https://i.imgur.com/jOkR2oD.jpg

Bài 10:

a) Xét ΔABE vuông tại E và ΔCBD vuông tại D có 

\(\widehat{DBC}\) chung

Do đó: ΔABE\(\sim\)ΔCBD(g-g)

b) Xét ΔHDA vuông tại D và ΔHEC vuông tại E có 

\(\widehat{AHD}=\widehat{CHE}\)(hai góc đối đỉnh)

Do đó: ΔHDA\(\sim\)ΔHEC(g-g)

Suy ra: \(\dfrac{HD}{HE}=\dfrac{HA}{HC}\)

hay \(HD\cdot HC=HE\cdot HA\)

Bài 11: 

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có

\(\widehat{FAC}\) chung

Do đó: ΔABE\(\sim\)ΔACF(g-g)

b) Xét ΔFHB vuông tại F và ΔEHC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔFHB\(\sim\)ΔEHC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

hay \(HE\cdot HB=HF\cdot HC\)

c) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\widehat{AEF}=\widehat{ABC}\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét tam giác EHA và tam giác DHB có:

\(\widehat {EHA} = \widehat {DHB}\) (đối đỉnh)

\(\widehat {AEH} = \widehat {BDH} = 90^\circ \)

\( \Rightarrow \Delta EHA \backsim \Delta DHB\) (g-g)

\( \Rightarrow \frac{{HA}}{{HB}} = \frac{{HE}}{{HD}}\) (Tỉ số đồng dạng)

\( \Rightarrow HA.HD = HB.HE\)

loading...  loading...  loading...  

16 tháng 4 2018

Xét \(\Delta HEA\)và \(\Delta HDB\)có:

\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)

\(\widehat{AEH}=\widehat{BDH}\)(đường cao AD vuông với BC và BE vuông với AC)

\(\Rightarrow\Delta HEA\)đồng dạng với \(\Delta HDB\)(g.g)

\(\Rightarrow\frac{HA}{HB}=\frac{HE}{HD}\)\(\Rightarrow HA.HD=HB.HE\)\((1)\)

Chứng minh tương tự, ta có \(\Delta CEH\)đồng dang với \(\Delta BFH\)

\(\Rightarrow\frac{HC}{HB}=\frac{HE}{HF}\)\(\Rightarrow HC.HF=HB.HE\)\((2)\)

Từ \((1)\)và \((2)\)\(\Rightarrow HA.HD=HB.HE=HC.HF\)(đpcm)