K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 6 2020

\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\Rightarrow\sqrt[3]{a^2b^2c^2}\ge3\Rightarrow a^2b^2c^2\ge27\)

\(A=1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(A\ge1+27+3\sqrt[3]{a^2b^2c^2}+3\left(\sqrt[3]{a^2b^2c^2}\right)^2\)

\(A\ge1+27+3.3+3.3^2=...\)

Dấu "=" xảy ra khi \(a=b=c=...\)

NV
2 tháng 11 2019

\(A\ge7\left(a+b+c\right)^2+12\left(a+b+c\right)^2+\frac{18135}{a+b+c}\)

Đặt \(a+b+c=x\Rightarrow0< x\le2\)

\(A\ge19x^2+\frac{18135}{x}=19x^2+\frac{152}{x}+\frac{152}{x}+\frac{17831}{x}\)

\(A\ge3\sqrt[3]{\frac{19.152.152x^2}{x^2}}+\frac{17831}{2}=\frac{18287}{2}\)

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

13 tháng 8 2020

đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

áp dụng bđt Bunhiacopxki dạng phân thức ta được

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)

phép chứng minh sẽ hoàn tất nếu ta chứng minh được

\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

hay ta cần chứng minh

\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)

khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

NV
13 tháng 6 2020

\(\Leftrightarrow\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2\le1\)

Đặt \(\left[\left(\frac{b}{a}\right)^2;\left(\frac{c}{a}\right)^2\right]=\left(x;y\right)\Rightarrow x+y\le1\)

\(P=x+y+\frac{1}{y}+\frac{1}{x}\ge x+y+\frac{4}{x+y}\)

\(P\ge x+y+\frac{1}{x+y}+\frac{3}{x+y}\ge2\sqrt{\frac{x+y}{x+y}}+\frac{3}{1}=5\)

\(p_{min}=5\) khi \(x=y=\frac{1}{2}\Leftrightarrow b=c=\frac{a}{\sqrt{2}}\)

NV
10 tháng 6 2019

Ta chứng minh \(\frac{a^3}{\left(1-a\right)^2}\ge\frac{4a-1}{4}\) với mọi a thỏa mãn \(0< a< 1\)

\(\Leftrightarrow4a^3-\left(4a-1\right)\left(1-a\right)^2\ge0\)

\(\Leftrightarrow9a^2-6a+1\ge0\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có: \(\frac{b^3}{\left(1-b\right)^2}\ge\frac{4b-1}{4}\); \(\frac{c^3}{\left(1-c\right)^2}\ge\frac{4c-1}{4}\)

Cộng vế với vế:

\(\Rightarrow P\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)

1 tháng 8 2019

\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)

Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)

Tương tự hai BĐT còn lại rồi cộng theo vế:

\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
25 tháng 8 2020

Lời giải:

Ta có:

$a^2+b^2+c^2+ab+bc+ac=\frac{6(a^2+b^2+c^2+ab+bc+ac)}{6}=\frac{4(a+b+c)^2+(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\Rightarrow P\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}.\left[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\right]$

Đặt $a-b=m, b-c=n$ thì $a-c=m+n$

Khi đó:

$6P\geq [m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

$[m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

$\geq [\frac{(m+n)^2}{2}+(m+n)^2]\left[\frac{1}{2}(\frac{1}{m}+\frac{1}{n})^2+\frac{1}{(m+n)^2}\right]$

$\geq \frac{3}{2}.(m+n)^2\left[\frac{8}{(m+n)^2}+\frac{1}{(m+n)^2}\right]$

$=\frac{3}{2}(m+n)^2.\frac{9}{(m+n)^2}=\frac{27}{2}$

$\Rightarrow 6P\geq \frac{27}{2}$

$\Rightarrow P\geq \frac{9}{4}$

Vậy GTNN của $P$ là $\frac{9}{4}$.

24 tháng 8 2020

chuẩn rồi bạn bài này mình lấy ra từ đề thi tỉnh học sinh giỏi mà