K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 6 2019

Ta chứng minh \(\frac{a^3}{\left(1-a\right)^2}\ge\frac{4a-1}{4}\) với mọi a thỏa mãn \(0< a< 1\)

\(\Leftrightarrow4a^3-\left(4a-1\right)\left(1-a\right)^2\ge0\)

\(\Leftrightarrow9a^2-6a+1\ge0\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có: \(\frac{b^3}{\left(1-b\right)^2}\ge\frac{4b-1}{4}\); \(\frac{c^3}{\left(1-c\right)^2}\ge\frac{4c-1}{4}\)

Cộng vế với vế:

\(\Rightarrow P\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)