K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

\(VT\ge\frac{27}{abc}+abc=abc+\frac{1}{abc}+\frac{26}{abc}\ge2+\frac{26}{\frac{\left(a+b+c\right)^3}{27}}=26+2=28\left(a+b+c=3\right)\)

Dấu bằng xảy ra khi a=b=c=1

6 tháng 12 2019

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}a\)\(\Leftrightarrow\)\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}a-\frac{1}{8}b-\frac{1}{8}-\frac{1}{4}\)

\(\Sigma\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) :) 

NM
8 tháng 5 2021

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:

\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)

Tiếp tục áp dụng AM_GM:

\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn

\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng hai BĐT thu được lại, ta có:

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

21 tháng 2 2022

Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:

\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)

Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:

\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)

Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)

Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:

\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

Tuy nhiên để đến khi \(a=b=c=1\) thì:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)

Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:

\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)

Chứng minh sẽ hoàn tất nếu ta chỉ được:

\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)

Vậy theo bất đẳng thức Cauchy ta được:

\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)

\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

Khi đó ta được:

\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)

Vậy ta cần chỉ ra rằng:

\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)

Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.

Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)

2 tháng 9 2019

Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)

BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)

\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)

Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)

\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).

Từ đó ta có thể suy ra đpcm.

2 tháng 9 2019

Nãy nhầm vị trí:v Làm lại bài 3:

Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)

\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)

Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:

\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)

\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.

Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)

\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)

Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)

Như vậy ta có đpcm.

P.s: Mong là lần này không bị nhầm

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

NV
21 tháng 10 2019

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(P=\frac{x^3yz}{y+z}+\frac{xy^3z}{x+z}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)