Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{b+c+5}{1+a}+\frac{c+a+4}{2+b}+\frac{a+b+3}{3+c}\)
\(\Rightarrow P+3=\frac{b+c+5}{1+a}+1+\frac{c+a+4}{2+b}+1+\frac{a+b+3}{3+c}+1\)
\(\Rightarrow P+3=\frac{a+b+c+6}{1+a}+\frac{a+b+c+6}{2+b}+\frac{a+b+c+6}{3+c}\)
\(\Rightarrow P+3=\frac{12}{1+a}+\frac{12}{2+b}+\frac{12}{3+c}\ge\frac{12.9}{6+a+b+c}=9\)
\(\Rightarrow P\ge6\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=2\\c=1\end{matrix}\right.\)
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}\ge\frac{2a}{c}\) ; \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\) ; \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
2. \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc.ac}{ab}}=2c\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi \(a=b=c\)
A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)
=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)
<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)
ta lại có
\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)
dấu "=" xảy ra <=>a=b=c
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)=\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)
Vì a;b;c>0 áp dụng bất đẳng thức cosi ta có:
\(\frac{a}{c}\)+\(\frac{c}{a}\)\(\ge\)2\(\sqrt{\frac{a}{c}.\frac{c}{a}}\)=2
\(\frac{b}{c}\)+\(\frac{c}{b}\)\(\ge\)2\(\sqrt{\frac{b}{c}.\frac{c}{b}}\)=2
\(\frac{b}{a}\)+\(\frac{a}{b}\)\(\ge\)2\(\sqrt{\frac{b}{a}.\frac{a}{b}}\)=2
Cộng vế với vế ta có:
\(\frac{a}{c}\)+\(\frac{b}{c}\)+\(\frac{b}{a}\)+\(\frac{c}{a}\)+\(\frac{c}{b}\)+\(\frac{a}{b}\)\(\ge\)2+2+2
=>\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{c+a}{b}\)\(\ge\)6
dấu = xảy ra a=b=c
a=b=c