\(A=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)

=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)

<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)

ta lại có

\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)

dấu "=" xảy ra <=>a=b=c

13 tháng 8 2019

Ta có: \(\frac{5a^3-b^3}{ab+3a^2}=\frac{3a^3-b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

\(=a-\frac{a^2b+b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)

= \(a-\frac{b\left(a^2+b^2\right)}{a\left(b+3a\right)}+\frac{2a^3}{a\left(b+3a\right)}\) (1)

Áp dụng BĐT AM - GM ( x2 + y2 \(\ge2xy\)) ta có:

(1) \(\le a-\frac{2ab^2}{a\left(b+3a\right)}+\frac{2a^2}{b+3a}\) = \(a-\frac{2b^2}{b+3a}+\frac{2a^2}{b+3a}\) (2)

Tương tự ta cũng có:

\(\frac{5b^3-c^3}{bc+3b^2}\le b-\frac{2c^2}{c+3b}+\frac{2b^2}{c+3b}\left(3\right)\)

\(\frac{5c^3-a^2}{ca+3c^2}\)\(\le c-\frac{2a^2}{a+3c}+\frac{2c^2}{a+3c}\)(4)

Từ (2), (3), (4) \(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le a+b+c+\left(\frac{2a^2}{a+3c}-\frac{2a^2}{a+3c}\right)+\left(\frac{2b^2}{b+3c}-\frac{2b^2}{b+3c}\right)+\left(\frac{2c^2}{c+3a}-\frac{2c^2}{c+3a}\right)=a+b+c\le2018\)

Vậy \(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)

1 tháng 1 2020

1/ a/dung bđt Cauchy - Schwarz dạng phân thức: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}=\frac{3}{4}\)

2/ a/dung bđt bunhiacopxki :

\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3\cdot2\left(a+b+c\right)=6\cdot6=36\)

=> \(S\le6\)

NV
18 tháng 2 2020

Thử với \(a=b=c=1\) ta thấy ngay BĐT đã cho sai

NV
5 tháng 7 2020

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự: \(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\) ; \(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng vế với vế ta có đpcm

NV
21 tháng 10 2019

\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)

\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

12 tháng 12 2016

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi a=b=c=d

 

5 tháng 8 2016

là \(\frac{2}{3}\) nha

19 tháng 2 2020

Áp dụng bđt Cauchy-schwarz dạng engel ta có:

1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)

Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)

2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)

Dấu "=" \(\Leftrightarrow a=b=c\)