Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Câu hỏi của 원회으Won Hoe Eu - Toán lớp 8 | Học trực tuyến
Hơi tắt 1 xíu ^.^
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự: \(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\) ; \(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)
Cộng vế với vế ta có đpcm
\(P=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{2ac+3bc}\)
\(P\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bđt Cauchy-schwarz dạng engel ta có:
1. \(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{\left(a+b+c\right)^2}{\left(a+2b\right)+\left(b+2c\right)+\left(c+2a\right)}=\frac{a+b+c}{3}\)
Dấu "=" \(\Leftrightarrow\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\Leftrightarrow a=b=c\)
2. \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{\left(2a+3b\right)+\left(2b+3c\right)+\left(2c+3a\right)}=\frac{a+b+c}{5}\)
Dấu "=" \(\Leftrightarrow a=b=c\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
Ta có: \(\frac{5a^3-b^3}{ab+3a^2}=\frac{3a^3-b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)
\(=a-\frac{a^2b+b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)
= \(a-\frac{b\left(a^2+b^2\right)}{a\left(b+3a\right)}+\frac{2a^3}{a\left(b+3a\right)}\) (1)
Áp dụng BĐT AM - GM ( x2 + y2 \(\ge2xy\)) ta có:
(1) \(\le a-\frac{2ab^2}{a\left(b+3a\right)}+\frac{2a^2}{b+3a}\) = \(a-\frac{2b^2}{b+3a}+\frac{2a^2}{b+3a}\) (2)
Tương tự ta cũng có:
\(\frac{5b^3-c^3}{bc+3b^2}\le b-\frac{2c^2}{c+3b}+\frac{2b^2}{c+3b}\left(3\right)\)
\(\frac{5c^3-a^2}{ca+3c^2}\)\(\le c-\frac{2a^2}{a+3c}+\frac{2c^2}{a+3c}\)(4)
Từ (2), (3), (4) \(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le a+b+c+\left(\frac{2a^2}{a+3c}-\frac{2a^2}{a+3c}\right)+\left(\frac{2b^2}{b+3c}-\frac{2b^2}{b+3c}\right)+\left(\frac{2c^2}{c+3a}-\frac{2c^2}{c+3a}\right)=a+b+c\le2018\)
Vậy \(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)
Đẳng thức xảy ra khi a=b=c=d
A=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\)
=>\(\frac{3}{2}\)-A=\(\frac{1}{2}-\frac{a}{3a+b+c}+\frac{1}{2}-\frac{b}{3b+a+c}+\frac{1}{2}-\frac{c}{3c+a+b}\)
<=>\(\frac{3}{2}\)-A=\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\)
ta lại có
\(\left(a+b+c\right)\left(\frac{1}{6a+2b+2c}+\frac{1}{6b+2a+2c}+\frac{1}{6c+2a+2b}\right)\ge\left(a+b+c\right)\left(\frac{\left(1+1+1\right)^2}{6a+2b+2c+6b+2a+2c+6c+2a+2b}\right)=\frac{9}{10}\)<=>\(\frac{3}{2}-\)A\(\ge\frac{9}{10}\)<=>A\(\le\frac{3}{2}-\frac{9}{10}=\frac{3}{5}\)
dấu "=" xảy ra <=>a=b=c