K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

1) x(x-2) + 3(x+5) + 4x -15 =0

=> x\(^2\) - 2x + 3x + 15 + 4x - 15 = 0

=> ( x\(^2\) -2x + 3x + 4x ) + 15 - 15 = 0

=> x \(^2\) -2x+3x+4x = 0

=> x(x-2+3+4)=0

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2+3+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

2) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=2017\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017.2017\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017^2\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}=2017^2\)

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

9 tháng 8 2017

xin lỗi mik xin đc sửa lại 3 dòng cuối vì mik ghi nhầm :

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow3+\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=2017^2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

29 tháng 10 2017

Huhu,ai giải giùm minh đi mà

T^T

9 tháng 6 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+a.2017}{b.\left(b+2017\right)}\) (1)

\(\dfrac{a+2017}{b+2017}=\dfrac{b.\left(a+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+b.2017}{b.\left(b+2017\right)}\) (2)

Từ (1) và (2) suy ra:

+) Nếu a >b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}>\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Rightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

+) Nếu a <b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}< \dfrac{a.b+b.2017}{b.\left(b+2017\right)}\) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

+) Nếu a =b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}=\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Rightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

22 tháng 8 2018

1: so sánh 2016/2017+2017/2018 

vì 2016/2017 > 1/2017 >1/2018 =

> 2016/2017+2017/2018 >1/2018+2017/2018=1

vậy .....

22 tháng 8 2018

bạn làm đúng rồi nhưng mình cần 2 bài

3 tháng 8 2016

Xin lỗi mình nhập bị nhầm. Này là toán 8 ạ

12 tháng 9 2016

1 là 15

2 là 452

3 là 7258

nha nhớ nghe