K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2021

\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)

\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)

NV
11 tháng 6 2021

Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2021

Lời giải:

Áp dụng BĐT AM-GM:

$1\geq a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$

Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{6ab}+\frac{1}{3ab}\geq \frac{4}{1+a^2+b^2+6ab}+\frac{1}{3ab}\)

\(=\frac{4}{1+(a+b)^2+4ab}+\frac{1}{3ab}\geq \frac{4}{1+1+4.\frac{1}{4}}+\frac{1}{3.\frac{1}{4}}=\frac{8}{3}\)

Vậy $A_{\min}=\frac{8}{3}$ khi $a=b=\frac{1}{2}$

23 tháng 4 2022

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}+8ab-4ab\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{2}.8}-\dfrac{4.\left(a+b\right)^2}{4}=\dfrac{4}{\left(a+b\right)^2}+4-\left(a+b\right)^2\ge4+4-1=7\Rightarrow minA=7\Leftrightarrow a=b=\dfrac{1}{2}\)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)