K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

a > 2

=> a = 2 + k

b > 2

=> b = 2 + q

Ta có :

+) a + b = 2 + k + 2 + q = 4 + k + q + 0

+) a.b = ( 2 + k ) ( 2 + q ) = 4 + 2k + 2q + k.q 

Dễ thấy 4 = 4; 2k > k; 2q > q; k.q > 0

Do đó : a.b > a+b ( đpcm )

6 tháng 1 2019

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

16 tháng 9 2017

b)có vì ab + ba sẽ có kết quả là hai số giống nhau.chỉ có số ab nhỏ hơn 55 sẽ có thể nhìn dõ được điều này.

16 tháng 9 2017


a ) nếu a và b cùng chắn thì ab(a + b) \(⋮\) 2
    nếu a chắn, b lẻ(hoặc a lẻ,b chẵn) thì ab(a +b) \(⋮\)2
    nếu a,b cùng lẻ thì ab(a+b) \(⋮\)2
b) ab + ba = 10a + b + 10b + a = 11a + 11 b = 11 ( a + b ) \(⋮\)11

19 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

15 tháng 1 2023

a) Dễ thấy P = 102120 + 2120

= 102120 + 212.10

= 10(102119 + 212) 

=> P \(⋮10\)

Lại có P = 102120 + 2120

= 10(102119 + 212)

= 10.(1000...00 + 212) 

         2119 số 0

= 10.1000...0212

          2116 số 0

Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)

là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)

= 1 + 2 + 1 + 2 = 6 \(⋮3\)

=> S \(⋮3\Rightarrow P=10S⋮3\)

mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)

 

 

   

15 tháng 1 2023

Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)

=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2) ta được 

(10n + 15) - (10n + 4) \(⋮d\)

<=> 11 \(⋮d\)

\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)

<=> d = 11 

Vậy (a;b) = 11

5 tháng 3 2020

Ta có:(a-b)-(b+c)-(c-a)-(a-b-c)

         =a-b-b-c-c+a-a+b+c

         =(a+a-a)-(b+b-b)-(c+c-c)

         =a-b-c(đpcm)

Ta có: \(\left(a-b\right)-\left(b+c\right)-\left(c-a\right)-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow a-b-b-c-c+a-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow2a-2b-2c-\left(a-b-c\right)=a-b-c\)

\(\Leftrightarrow a-b-c=a-b-c\left(đpcm\right)\)

hok tốt!!

24 tháng 10 2021

TL:

a)  Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2

 nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2 

^HT^

24 tháng 10 2021

TL:

 

- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2

- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2

-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2

vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2

 ^HT^
4 tháng 1 2019

_____________________Giải_____________________

\(\hept{\begin{cases}a+2b⋮3\\3a+3b⋮3\end{cases}}\Rightarrow3a+3b-a-2b⋮3\Rightarrow2a+b⋮3\)

2. _____________________Giải________________________

\(\hept{\begin{cases}a-b⋮7\\7a+7b⋮7\end{cases}}\Rightarrow7a+a+7b-b⋮7\Rightarrow8a+6b⋮7\)

=> 2(4a+3b) chia hết cho 7  vì  (2;7)=1

=> 4a+3b chia hết cho 7 (đpcm)

12 tháng 5 2018

Trả lời

a) A giao với B={0;1;2}

b) Có 12 tích A và B được tạo thành

12 tháng 5 2018

BN CÓ THỂ GIẢI RÕ RA ĐC KO Ạ ?

16 tháng 8 2016

1) Không có số tự nhiên nào nhỏ hơn 1 chia 5 dư 3

2) + Nếu n lẻ thì n + 5 chẵn => n + 5 chia hết cho 2 =>n.(n + 5) chia hết cho 2

+ Nếu n chẵn thì n chia hết cho 2 => n.(n + 5) chia hết cho 2

=> n.(n + 5) luôn chia hết cho 2

3) A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp =>n.(n + 1) chia hết cho 2 mà 1 không chia hết cho 2

=> A không chia hết cho 2

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> A = n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5