Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
a : b = ab
=> a = ab.b = ab^2
=> b^2 = 1 ( vì a,b khác 0 )
=> b=+-1
+, Nếu b=-1
Có : ab = a+b
=> -a = a+1
=> a=-1/2
=> T = 5/4
+, Nếu b = 1
Có : ab = a+b
=> a = a+1
=> ko tồn tại a t/m
Vậy T = 5/4
Tk mk nha
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Ta có :
a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1a+b−cc=b+c−aa=c+a−bb=a+b−c+b+c−a+c+a−bc+a+b=a+b+ca+b+c=1
→a+bc−1=b+ca−1=c+ab−1=1→a+bc−1=b+ca−1=c+ab−1=1
→a+bc=b+ca=c+ab=2→a+bc=b+ca=c+ab=2
→a+bc.b+ca.c+ab=2.2.2=8→a+bc.b+ca.c+ab=2.2.2=8
→a+ba.b+cb.c+ac=8→a+ba.b+cb.c+ac=8
→(1+ba)(1+cb)(1+ac)=8→(1+ba)(1+cb)(1+ac)=8
→M=8
Bạn nhớ là cái này ko phải mình lm đc đây làm mình tìm đc thui nhá =<
Xét \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\Rightarrow M=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
Xét \(a+b+c\ne0\) ta có:\(\frac{a-b+c}{b}=\frac{b-c+a}{c}=\frac{c-a+b}{a}=\frac{a-b+c+b-c+a+c-a+b}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a-b+c=b\\b-c+a=c\\c-a+b=a\end{cases}}\Rightarrow\hept{\begin{cases}a+c=2b\\a+b=2c\\b+c=2a\end{cases}}\Rightarrow M=\frac{2a.2b.2c}{abc}=8\)
Ta có:
\(\dfrac{a}{b}=ab\Rightarrow a=\dfrac{a}{b^2}\Rightarrow b^2=1\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
+) Nếu b=1 \(\Rightarrow ab=a+b\Rightarrow a=a+1\left(vôlí\right)\)
+) Nếu \(b=-1\Rightarrow ab=a+b\Rightarrow-a=a-1\Rightarrow a=\dfrac{1}{2}\)
\(T=a^2+b^2=\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)
ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1
+) Nếu b=1 ⇒ab=a+b⇒a=a+1(vôlí)⇒ab=a+b⇒a=a+1(vôlí)
+) Nếu b=−1⇒ab=a+b⇒−a=a−1⇒a=12b=−1⇒ab=a+b⇒−a=a−1⇒a=12
T=a2+b2=(12)2+(−1)2=14+1=54