K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

với a, b >0

\(a^9+b^9=a^{10}+b^{10}< =>a^9\left(a-1\right)+b^9\left(b-1\right)=0\)

\(a^{10}+b^{10}=a^{11}+b^{11}< =>a^{10}\left(a-1\right)+b^{10}\left(b-1\right)=0\)

trừ vế theo vế ta được (a-1)(a10-a9) + (b-1)(b10-b9) = 0 <=> [b3(b-1)]2 + [b3(b-1)]2 =0

<=> \(\hept{\begin{cases}a^3\left(a-1\right)=0\\b^3\left(b-1\right)=0\end{cases}< =>\hept{\begin{cases}a-1=0\\b-1=0\end{cases}< =>}}\)a = b =1 

vậy P= 2020

17 tháng 12 2019

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

17 tháng 12 2019

thank . Mấy chỗ đó hiểu dc

3 tháng 4 2021

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)

Khi a + b = 0

=> (a + b)(b + c)(c + a) = 0 (2)

Nếu a + b \(\ne0\)

=> ab = -(a + b + c).c

=> ab + (a + b + c).c = 0

=> ab + ac + bc + c2 = 0

=> (a + c)(b + c) = 0

=> (a + b)(b + c)(a + c) = 0 (1)

Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)

=> a = -b hoặc b = -c hoặc = c = -a

Nếu a = -b => a11 = -b11 => a11 + b11 = 0

=> P = 0 (3)

Nếu b = -c => b9 = - c9 => b9 + c9 = 0

=>P = 0 (4)

Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0

=> P = 0 (5)

Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp 

Vạy P = 0

3 tháng 4 2021

Xyz là ad ak?

11 tháng 5 2018

Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé 

Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)

Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)

Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)

<=> \(ab\le1\)

<=> \(1-ab\ge0\)

Suy ra P = 2018 - 2018ab = 2018(1 - ab)  \(\ge0\)

11 tháng 5 2018

\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)    với \(a,b\in R\) 

nếu  \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)  thì  \(P=2018>0\)

nếu  \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\)  thì xảy ra 2 trường hợp như sau 

\(TH1\)\(a,b\)  trái dấu   \(\Rightarrow P>0\)

\(TH2\)  \(a,b\)  cùng dấu  

vì \(2.a^{2018}.b^{2018}>0\forall a,b\)  

\(\Rightarrow a^{2017}+b^{2017}>0\)   để 2 đẳng thức tồn tại dấu \("="\)

\(\Rightarrow a,b>0\)  ( cùng dương)

có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)

\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)

\(\Rightarrow ab\le1\)

\(\Rightarrow2018-2018ab>2018-2018=0\)

dấu \("="\)  xảy ra \(\Leftrightarrow a=b=1\)

vậy \(P\)  luôn không âm