K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

? abc=? (1 hay 2020)

13 tháng 6 2021

abc=2020

 

NV
5 tháng 1 2019

\(\left(a+b+c\right)\left(ab+ac+bc\right)=\left(a+b+c\right)\left(ab+ac+bc+c^2-c^2\right)\)

\(=\left(a+b+c\right)\left(\left(a+c\right)\left(b+c\right)-c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2\left(a+b\right)+c\left(a+c\right)\left(b+c\right)-c^3\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)-c^2a-c^2b+abc+c^2a+c^2b+c^3-c^3\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc=\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018\)

\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)+2018=2018\)

\(\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

Ta có:

\(A=\left(b^2c+2018\right)\left(c^2a+2018\right)\left(a^2b+2018\right)\)

\(A=\left(b^2c+abc\right)\left(c^2a+abc\right)\left(a^2b+abc\right)\)

\(A=bc\left(a+b\right)ac\left(b+c\right)ab\left(a+c\right)\)

\(A=\left(abc\right)^2\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

\(A=2018^2.0=0\)

4 tháng 1 2019

\(P=\left(b^2c+abc\right)\left(a^2b+abc\right)\left(c^2a+abc\right)\)

\(=bc\left(a+b\right)\cdot ab\left(c+a\right)\cdot ca\left(b+c\right)\)

\(=\left(abc\right)^2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Lại có:

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=0\)

\(\Leftrightarrow\left(a^2b+abc+a^2c\right)+\left(ab^2+b^2c+abc\right)+\left(bc^2+c^2a+abc\right)-abc=0\)

\(\Leftrightarrow a^2b+ca^2+ab^2+2abc+ac^2+b^2c+bc^2=0\)

\(\Leftrightarrow a^2\left(b+c\right)+a\left(b^2+2bc+c^2\right)+bc\left(b+c\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left(a^2+ab+ca+bc\right)=0\)

\(\Leftrightarrow\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]=0\)

\(\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(c+a\right)=0\)

\(\Rightarrow P=0\)

17 tháng 12 2019

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

17 tháng 12 2019

thank . Mấy chỗ đó hiểu dc

11 tháng 5 2018

Đề đúng phải là \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nhé 

Vì \(a^{2017}+b^{2017}=2.a^{1008}.b^{1008}\) nên \(\left(a^{2017}+b^{2017}\right)^2=4.a^{2016}.b^{2016}\)

Mà \(\left(a^{2017}+b^{2017}\right)^2\ge4.a^{2017}.b^{2017}\)

Suy ra \(4a^{2016}b^{2016}\ge4a^{2017}b^{2017}\)

<=> \(ab\le1\)

<=> \(1-ab\ge0\)

Suy ra P = 2018 - 2018ab = 2018(1 - ab)  \(\ge0\)

11 tháng 5 2018

\(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)    với \(a,b\in R\) 

nếu  \(\orbr{\begin{cases}a=0\\b=0\end{cases}}\)  thì  \(P=2018>0\)

nếu  \(\orbr{\begin{cases}a\ne0\\b\ne0\end{cases}}\)  thì xảy ra 2 trường hợp như sau 

\(TH1\)\(a,b\)  trái dấu   \(\Rightarrow P>0\)

\(TH2\)  \(a,b\)  cùng dấu  

vì \(2.a^{2018}.b^{2018}>0\forall a,b\)  

\(\Rightarrow a^{2017}+b^{2017}>0\)   để 2 đẳng thức tồn tại dấu \("="\)

\(\Rightarrow a,b>0\)  ( cùng dương)

có \(a^{2017}+b^{2017}=2a^{2018}.b^{2018}\)

\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(a.b\right)^{2019}}}\)

\(\Rightarrow ab\le1\)

\(\Rightarrow2018-2018ab>2018-2018=0\)

dấu \("="\)  xảy ra \(\Leftrightarrow a=b=1\)

vậy \(P\)  luôn không âm