K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\Rightarrow\dfrac{2a-3d}{2c-3d}=\dfrac{2a+3b}{2c-3d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

7 tháng 11 2021

chả bt đúng hay sai đây ta???

Bài làm

~ Đề bài sai ak, pk là Cho a+c = 2b và 2db = c.(b+d) ( với b,d ≠ 0) chứ, nếu không thì không làm được. ~

Ta có: a + c = 2b                       ( 1 ) 

    c( b + d ) = 2db                     ( 2 ) 

Thay ( 1 )( 2 ) ta được: 

c( b + d ) = d( a + c )

=> bc + cd = ad + cd

=> bc = ad

=> \(\frac{a}{b}=\frac{c}{d}\) ( đpcm )
# Học tốt #

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a-c}{3b-d}=\dfrac{3bk-dk}{3b-d}=k\)

\(\dfrac{2a+3c}{2b+3d}=\dfrac{2bk+3dk}{2b+3d}=k\)

Do đó: \(\dfrac{3a-c}{3b-d}=\dfrac{2a+3c}{2b+3d}\)

c: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{2ab+b^2}{2cd+d^2}=\dfrac{2\cdot bk\cdot b+b^2}{2\cdot dk\cdot d+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{2ab+b^2}{2cd+d^2}\)

2 tháng 10 2020

Bài 1:

a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)

\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)

\(\Leftrightarrow5-5x=8\)

\(\Leftrightarrow x=-\frac{3}{5}\)

b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)

2 tháng 10 2020

Bài 1:

c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)

24 tháng 6 2016

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}.\)

\(\Rightarrow\frac{a}{3b}=\frac{1}{3}\Rightarrow a=b\)

\(\Rightarrow\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c\)

\(\Rightarrow\frac{c}{3d}=\frac{1}{3}\Rightarrow c=d\)

Vậy, a=b=c=d đpcm.

24 tháng 6 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}.\) 

\(\Rightarrow\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}=1\)(1)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow b=c\)(2)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow c=d\)(3)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow d=a\)(4)

Từ (1)(2)(3)(4) suy ra a= b=c=d(dpcm)

24 tháng 6 2016

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}.\) (T/c dãy tỷ số bằng nhau)

=> \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)

Làm tương tự sẽ rút ra a=b=c=d