K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

M=1 ( chtt ) có đó vô mà tham khảo 

26 tháng 9 2017

Ta có :

M = 2( a3 + b3 ) - 3( a2 + b2 ) 

    = 2( a + b ) ( a2 - ab + b2 ) - 3( a2 + b2 ) 

    = 2( a2 - ab + b2 ) - 3 ( a2 + b

   = 2a2 - 2ab + 2b2 - 3a2 - 3b2 

   = -a2 - 2ab - b2 

   = - ( a + b )2

   = -1 

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

30 tháng 12 2020

Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)

\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)

\(\Leftrightarrow M=a^2-ab+3ab+b^2\)

\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)

Vậy: Khi a+b=1 thì M=1

M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2

=1-3ab+3ab(1-2ab)+6a^2b^2

=1

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)

3 tháng 1 2022

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

=1

10 tháng 6 2018

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

16 tháng 8 2015

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab\right)\)

\(=a^2-ab+b^2+3ab\left(a+b\right)^2=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2=1\)

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1