Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)
Ta có :
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Do \(a+b=a^3+b^3\)
\(\Rightarrow a+b=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\Rightarrow a^2-ab+b^2=1\)
Mà \(a^2=b^2=a+b\) ,ta có :
\(a+b-ab=1\)
\(\Rightarrow a+b-ab-1=0\)
\(\Rightarrow\left(a-1\right)-\left(ab-b\right)=0\)
\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Thay vaò biểu thức ,có :
\(1^{2015}+1^{2015}=1+1=2\)
Ta có: a+b+c=0
nên a+b=-c
Ta có: \(a^2-b^2-c^2\)
\(=a^2-\left(b^2+c^2\right)\)
\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)
\(=a^2-\left(b+c\right)^2+2bc\)
\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)
\(=2bc\)
Ta có: \(b^2-c^2-a^2\)
\(=b^2-\left(c^2+a^2\right)\)
\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)
\(=b^2-\left(c+a\right)^2+2ca\)
\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)
\(=2ac\)
Ta có: \(c^2-a^2-b^2\)
\(=c^2-\left(a^2+b^2\right)\)
\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)
\(=c^2-\left(a+b\right)^2+2ab\)
\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)
\(=2ab\)
Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(=\dfrac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)\)
Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được:
\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)
\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)
Vậy: \(M=\dfrac{3}{2}\)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)
Ta có
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)
\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)
Từ (1) và (2)
\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx=0\)
\(a>b>0\Rightarrow a+b>0\)
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab=7^2+4.60=289\Rightarrow a+b=17\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)=7.17=119\)
\(a^2+b^2=\left(a-b\right)^2+2ab=7^2+2.60=169\)
\(\Rightarrow a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=169^2-2.60^2=21361\)
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=7\cdot\sqrt{\left(a-b\right)^2+4ab}\)
\(=7\cdot\sqrt{7^2+4\cdot60}=119\)
từ giả thiết => a2-a+b2-b=0
=> a(a-1)+b(b-1)=0
không mất tính tổng quát giả sử a\(\le\)b => a(a-1)\(\le\)b((b-1)
=>2a(a-1) \(\le\)0
=>a(a-1) \(\le\)0
\(\Rightarrow\hept{\begin{cases}a\ge0\\a\le1\end{cases}}\)\(\Rightarrow a\left(1-a\right)\ge0\)
\(\Rightarrow b\left(1-b\right)\ge0\)
=> a(1-a) + b(1-b) \(\ge\)0
=> a+b-a2-b2 \(\ge\)0
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\end{cases}}\)
\(\hept{\begin{cases}\orbr{\begin{cases}a=0\\a=1\end{cases}}\\\orbr{\begin{cases}b=0\\b=1\end{cases}}\end{cases}}\)
đn sau dễ rồi tự giải