\(\frac{a^2+ab}{2b+a}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

MIN=1=>a=b=c=1

3 tháng 8 2018

ta có 

\(\frac{a}{1+2b^3}=\frac{a\left(1+2b^3\right)-2ab^3}{1+2b^3}=a-\frac{2ab^3}{1+2b^3}\)

Vì \(1+2b^3\ge3b^2\left(cosi\right)\)

\(\Rightarrow a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2}{3}ab\)

cmtt ta đc 

P\(\ge a+b+c-\frac{2}{3}\left(ab+bc+ca\right)\)

\(P\ge a+b+c-2\)

mặt khác \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Rightarrow a+b+c\ge3\)

\(\Rightarrow P\ge3-2=1\)

Dấu = xảy ra a=b=c=1

29 tháng 9 2016

Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)

=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)

Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)

Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)

\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)

<=> \(a=b=c=\frac{1}{3}\)

Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3

29 tháng 7 2018

A\(\ge3\)

You know

29 tháng 7 2018

A\(\ge\)9

31 tháng 7 2019

a, b, c > 0 mà sao abc = 0 được vậy nhỉ:))

31 tháng 7 2019

#)Góp ý :

Nguyễn Khang chuẩn :v

Rõ bảo mong k muốn ai thấy nick này mak cứ ló mặt ra lm chi ???

Lấy nick tth_new có ph nhanh hơn k ^^

Y
2 tháng 4 2019

\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)

\(P=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)

\(P\ge2\cdot\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}\cdot\frac{17ab}{8}}-\frac{\frac{\left(a+b\right)^2}{4}}{8}\)

( do \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};x+y\ge2\sqrt{xy};ab\le\frac{\left(a+b\right)^2}{4}\))

\(\Rightarrow P\ge\frac{8}{\left(a+b\right)^2}+2\sqrt{\frac{289}{4}}-\frac{\frac{4^2}{4}}{8}\)

\(\Rightarrow P\ge\frac{8}{16}+17-\frac{1}{2}=17\)

\(P=17\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\\frac{34}{ab}=\frac{17ab}{8}\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)

Vậy Min P = 17 \(\Leftrightarrow a=b=2\)