Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
Câu a)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\geq \frac{9}{a+2b}\) (1)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\geq \frac{9}{b+2c}\)(2)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\geq \frac{9}{c+2a}\) (3)
Lấy \((1)+2.(2)+3.(3)\) ta có:
\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{2}{b}+\frac{2}{c}+\frac{2}{c}+\frac{3}{c}+\frac{3}{a}+\frac{3}{a}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Leftrightarrow \frac{7}{a}+\frac{4}{b}+\frac{7}{c}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
Câu b)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{4}{b}\geq \frac{(1+2)^2}{a+b}=\frac{9}{a+b}\)
\(\Rightarrow \frac{1}{3a}+\frac{4}{3b}\geq \frac{3}{a+b}(1)\)
\(\frac{1}{3b}+\frac{1}{2c}+\frac{1}{2c}\geq \frac{9}{3b+4c}\)
\(\Rightarrow \frac{2}{3b}+\frac{2}{c}\geq \frac{18}{3b+4c}\) (2)
\(\frac{1}{c}+\frac{1}{3a}+\frac{1}{3a}\geq \frac{9}{c+6a}\) (3)
Từ (1); (2); (3) cộng theo vế:
\(\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)
(đpcm)
Dấu bằng xảy ra khi \(a=\frac{b}{2}=\frac{c}{3}\)
Câu c)
BĐT cần chứng minh tương đương với:
\(\frac{b+c+a}{a}+\frac{2a+c}{b}+\frac{4(a+b)}{a+c}\geq 10\) (*)
Áp dụng BĐT AM-GM:
\(\text{VT}=\frac{b}{a}+\frac{c+a}{2a}+\frac{c+a}{2a}+\frac{a}{b}+\frac{a+c}{2b}+\frac{a+c}{2b}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}\)
\(\geq 10\sqrt[10]{\frac{ba(c+a)^4(a+b)^4}{16a^3b^3(a+c)^4}}=10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\)
Theo AM-GM: \((a+b)^2\geq 4ab\Rightarrow (a+b)^4\geq 16a^2b^2\)
\(\Rightarrow \text{VT}\geq 10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\geq 10\)
Vậy (*) được cm. Ta có đpcm. Dấu bằng xảy ra khi a=b=c
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
Chứng minh : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(x^2-y^2-xy-xz+2yz\right)^2+\left(y^2-z^2-yz-xy+2xz\right)^2+\left(z^2-x^2-xz-yz+2xy\right)^2\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge a-\dfrac{a^2b}{2\sqrt{ab}}=a-\dfrac{\sqrt{a^3b}}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b}{bc+1}\ge b-\dfrac{\sqrt{b^3c}}{2};\dfrac{c}{ca+1}\ge c-\dfrac{\sqrt{c^3a}}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\dfrac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)
Áp dụng bđt Cô-si vào các số a,b,c dương :
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)
Chứng minh tương tự ta được:
\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)
Ta có:
\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)
BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)
Đánh giá cuối cùng đúng theo BĐT Cauchy
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Áp dụng bất đẳng thức AM - GM:
\(a^3+1+1\ge3a\);
\(\dfrac{b^3}{a^3}+1+1\ge3.\dfrac{b}{a}\);
\(\dfrac{1}{b^3}+1+1\ge3.\dfrac{1}{b}\);
\(2a+2.\dfrac{b}{a}+2.\dfrac{1}{b}\ge6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.