Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(x^2-y^2-xy-xz+2yz\right)^2+\left(y^2-z^2-yz-xy+2xz\right)^2+\left(z^2-x^2-xz-yz+2xy\right)^2\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge a-\dfrac{a^2b}{2\sqrt{ab}}=a-\dfrac{\sqrt{a^3b}}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b}{bc+1}\ge b-\dfrac{\sqrt{b^3c}}{2};\dfrac{c}{ca+1}\ge c-\dfrac{\sqrt{c^3a}}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\dfrac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
Đặt \(a\left(1-b\right)=x;b\left(1-c\right)=y;c\left(1-a\right)=x\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca=1-a\left(1-b\right)-b\left(1-c\right)-c\left(1-a\right)=1-x-y-z\)
BĐT cần c/m trở thành:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{3}{1-x-y-z}\)
\(\Leftrightarrow\left(1-x-y-z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-3\ge0\)
\(\Leftrightarrow\dfrac{1-x-y-z}{x}+\dfrac{1-x-y-z}{y}+\dfrac{1-x-y-z}{z}-3\ge0\)
\(\Leftrightarrow\dfrac{1-y-z}{x}+\dfrac{1-z-x}{y}+\dfrac{1-x-y}{z}-6\ge0\) (1)
Lại có: \(1-y-z=1-b\left(1-c\right)-c\left(1-a\right)=1-b-c+bc+ca=\left(1-b\right)\left(1-c\right)+ca\)
Nên (1) tương đương:
\(\dfrac{\left(1-b\right)\left(1-c\right)+ca}{a\left(1-b\right)}+\dfrac{\left(1-a\right)\left(1-c\right)+ab}{b\left(1-c\right)}+\dfrac{\left(1-a\right)\left(1-b\right)+bc}{c\left(1-a\right)}-6\ge0\)
\(\Leftrightarrow\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\)
BĐT trên hiển nhiên đúng theo AM-GM do:
\(\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\sqrt[6]{\dfrac{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}}=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Cám ơn bài giải của thầy Lâm ạ!
Và từ bài bất đăng thức này, đã được chế thành bài toán hình học trong 1 kì thi học sinh giỏi toán cấp tỉnh thầy ạ!
\(VT=\dfrac{a}{b\left(b^2+a\right)}+\dfrac{b}{c\left(c^2+b\right)}+\dfrac{c}{a\left(a^2+c\right)}\)
\(VT=\dfrac{a+b^2-b^2}{b\left(b^2+a\right)}+\dfrac{b+c^2-c^2}{c\left(c^2+b\right)}+\dfrac{c+a^2-a^2}{a\left(a^2+c\right)}\)
\(VT=\dfrac{1}{b}-\dfrac{b}{b^2+a}+\dfrac{1}{c}-\dfrac{c}{c^2+b}+\dfrac{1}{a}-\dfrac{a}{a^2+c}\)
\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\left(\dfrac{b}{b^2+a}+\dfrac{c}{c^2+b}+\dfrac{a}{a^2+c}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\dfrac{b}{b^2+a}\le\dfrac{b}{2b\sqrt{a}}=\dfrac{1}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại tao có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\sqrt{\dfrac{1}{a}}\le\dfrac{\dfrac{1}{a}+1}{2}\)
Tương tự ta có
\(\sqrt{\dfrac{1}{b}}\le\dfrac{\dfrac{1}{b}+1}{2};\sqrt{\dfrac{1}{c}}\le\dfrac{\dfrac{1}{c}+1}{2}\)
Thu lại ta có
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3}{2}\right)\)
\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)
\(\Rightarrow VT\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=1\)
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Do a;b;c là độ dài 3 cạnh của tam giác
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3\right)+15abc\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)+\dfrac{45}{4}abc\ge\dfrac{3}{4}\left(a+b+c\right)^3\)
\(\Rightarrow3\left(a^3+b^3+c^3\right)+4abc\ge\dfrac{3}{4}\left(a+b+c\right)^3-\dfrac{29}{4}abc\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{3}{4}\left(a+b+c\right)^3-\dfrac{29}{4}abc\ge\dfrac{13}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\left(a+b+c\right)^3\ge27abc\) (hiển nhiên đúng theo AM-GM)
\(\sum\dfrac{a^3}{a^2+b^2}=a+b+c-\dfrac{ab^2}{a^2+b^2}-\dfrac{bc^2}{b^2+c^2}-\dfrac{ca^2}{c^2+a^2}\ge a+b+c-\dfrac{b}{2}-\dfrac{c}{2}-\dfrac{a}{2}=\dfrac{a+b+c}{2}\) Dấu "=" xảy ra khi: \(a=b=c\)
Ta có \(\dfrac{a^2}{a+b^2}=a-\dfrac{ab^2}{a+b^2}\ge a-\dfrac{ab^2}{2b\sqrt{a}}=a-\dfrac{ab}{2\sqrt{a}}\)
Thiết lập tương tự và thu lại ta có :
\(VT\ge3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\)
Xét \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}=\sqrt{\dfrac{a^2b^2}{4a}}+\sqrt{\dfrac{b^2c^2}{4b}}+\sqrt{\dfrac{a^2c^2}{4c}}\)
Áp dụng bđt Cauchy ta có \(\sqrt{\dfrac{a^2b^2}{4a}}=\sqrt{\dfrac{ab}{2a}.\dfrac{ab}{2}}\le\dfrac{\dfrac{b}{2}+\dfrac{ab}{2}}{2}\)
Thiết lập tương tự và thu lại ta có :
\(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{\dfrac{a+b+c}{2}+\dfrac{ab+bc+ac}{2}}{2}=\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\left(1\right)\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\dfrac{\dfrac{3}{2}+\dfrac{ab+bc+ac}{2}}{2}\le\dfrac{\dfrac{3}{2}+\dfrac{3}{2}}{2}=\dfrac{3}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có \(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\le\dfrac{3}{2}\)
\(\Rightarrow3-\left(\dfrac{ab}{2\sqrt{a}}+\dfrac{bc}{2\sqrt{b}}+\dfrac{ac}{2\sqrt{c}}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c=1\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)\ge\dfrac{9}{2}\)
\(\Rightarrow\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\ge\dfrac{9}{2}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{9}{2}\)
\(\Rightarrow2\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge9\)
\(\Rightarrow\left(a+b+c+a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge9\)
Đặt: \(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\) Khi đó bất đẳng thức trở thành:
\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) (đúng theo AM-GM)
Vậy bất đẳng thức cần chứng minh đúng
Dấu "=" xảy ra khi: \(a=b=c>0\)
Lời giải:
Do $a+b+c=1$ nên:
\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)
\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)
Áp dụng bđt Cô-si vào các số a,b,c dương :
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)
Chứng minh tương tự ta được:
\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)