Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $x$ là phần tử bất kỳ thuộc $B$. Khi đó:
$x=10n+22=5(2n+3)+7=5m+7$ với $m\in\mathbb{Z}$
$\Rightarrow x\in A$
Vậy $B$ là tập con của $A$
a) - Để chứng minh rằng 2 ∈ A, ta cần tìm một số nguyên k sao cho 3k + 2 = 2. Thấy ngay k = 0 là thỏa mãn, vì 3*0 + 2 = 2. Vậy 2 ∈ A.- Để chứng minh rằng 7 ∉ B, ta cần chứng minh rằng không tồn tại số nguyên m để 6m + 2 = 7. Giả sử tồn tại m, ta có 6m = 5, nhưng đây là một phương trình vô lý vì 6 không chia hết cho 5. Vậy 7 ∉ B.- Để kiểm tra xem số 18 có thuộc tập hợp A hay không, ta cần tìm một số nguyên k sao cho 3k + 2 = 18. Giải phương trình này, ta có 3k = 16, vì 3 không chia hết cho 16 nên không tồn tại số nguyên k thỏa mãn. Vậy số 18 không thuộc
a, b sai đề
c, Ta có: \(VT=a\left(c-b\right)-b\left(-a-c\right)=ac-ab+ab+bc\)
\(=ac+bc=c\left(a+b\right)=VP\)
\(\Rightarrowđpcm\)