Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. Ta có: A = 5 + 5^2 + 5^3 +....+ 5^100
⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100 ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5
⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6
A = 6. 5 + 5 3 + ... + 5^99 chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số
b,A không hải số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 5198)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. Ta có: A = 5 + 52 + 53 +....+ 5100
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
ta có : A=5+5^2+...+5^100=......5 chia hết cho 5
A=5+5^2+...+5^100>5
suy ra: A là hợp số
b) Ta có :
5 chia hết cho 5
5^2 chia hết cho 5
....................................
5^100 chia hết cho 5
=> A chia hết cho 5, 5 là số nguyên tố (1)
Mà : 5 ko chia hết cho 5^2
5^2 chia hết cho 5^2
.............................................
5^100 chia hết cho 5^2
=> A ko chia hết cho 5^2 (2)
Từ (1) + (2) => A ko là số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
Câu b trả lời thế nào vậy???
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 58)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.