K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Leftrightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\text{ và }\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{a\cdot b\cdot c}{2a\cdot2b\cdot3c}=\dfrac{1}{8}\)

24 tháng 3 2018

3 số đầu ko bằng nhau 

28 tháng 3 2018

gì chứ cho 3 số đó bằng nhau mak

đó là giả thiết 

25 tháng 2 2022

b.\(ĐK:x;y\in Z^+;x;y\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)

\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)

\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)

\(\Leftrightarrow x=\dfrac{5y}{y-5}\)

\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )

Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

TH1: 

\(y-5=1\) 

\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm )   ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )

Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:

\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)

25 tháng 2 2022

Câu a mik ko bt nên bạn tham khảo nhé:

https://hoc24.vn/cau-hoi/cho-a-b-c-0-va-day-ti-so-dfrac2bc-aadfrac2c-babdfrac2ab-cctinh-p-dfracleft3a-2brightleft3b-2crightleft.177725456910

7 tháng 3 2018

Ta có: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)

Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Leftrightarrow\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{\left(a+b+c\right)2}{a+b+c}=2\).Do:

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=2\) nên:

\(\Rightarrow3a-b=2c\)  (1)

\(\Rightarrow3b-c=2a\)  (2)

\(\Rightarrow3c-a=2b\)(3)

Thế (1) ; (2) ; (3) vào A. Ta có:

\(\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)

\(\Leftrightarrow A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)

\(\Leftrightarrow A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\). Do: \(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\Rightarrow\frac{a}{-a}=\frac{b}{-b}=\frac{c}{-c}=\left(-1\right)\)

\(\Leftrightarrow A=\left(-1\right)+\left(-1\right)+\left(-1\right)=\left(-3\right)\)

   P/s: Mình không chắc nên nếu sai thì bạn thông cảm nha

7 tháng 3 2018

Mình làm thử các bạn xem có đúng ko nhé 

Ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3a+3b+3c-a-b-c}{a+b+c}\)

\(=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)

Do đó : 

\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)

\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)

\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào A ta có : 

\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)

\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)

\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(A=-3\)

Vậy \(A=-3\)

Nếu đúng thì thui, sai thì đừng có k sai cho mình nha :)

7 tháng 3 2018

Ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3a-b}{c}=\frac{3b-c}{a}=\frac{3c-a}{b}=\frac{3a-b+3b-c+3c-a}{a+b+c}=\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{a+b+c}\)

\(=\frac{\left(a+b+c\right)\left(3-1\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=\frac{2}{1}=2\)

Do đó : 

\(\frac{3a-b}{c}=2\)\(\Rightarrow\)\(3a-b=2c\)\(\left(1\right)\)

\(\frac{3b-c}{a}=2\)\(\Rightarrow\)\(3b-c=2a\)\(\left(2\right)\)

\(\frac{3c-a}{b}=2\)\(\Rightarrow\)\(3c-a=2b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào A ta có : 

\(A=\frac{a}{2b-3c}+\frac{b}{2c-3a}+\frac{c}{2a-3b}\)

\(A=\frac{a}{3c-a-3c}+\frac{b}{3a-b-3a}+\frac{c}{3b-c-3b}\)

\(A=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)\)

\(A=-3\)

Vậy \(A=-3\)

Chúc bạn học tốt 

21 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Do đó : 

\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)

\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)

\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được : 

\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)

Vậy \(P=\frac{1}{8}\)

Chúc bạn học tốt ~ 

2 tháng 11 2021

Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0