Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + ...+3100
3A = 32 + 33 + 34 + ...+ 3101
3A - A = ( 32 + 33 + 34 + ...+ 3101 ) - ( 3 + 32 + 33 + ...+3100 )
2A = 3101 - 3
Thay vào 2A + 3 = 3n ta có
3101 - 3 + 3 = 3n
3101 = 3n
=> n = 101
A = 3 + 32 + 33 +....+ 3100
\(\Rightarrow\) 3A= 3.(3 + 32 + 33 +....+ 3100)
\(\Rightarrow\) 3A= 32 + 33 + 34 +.....+ 3101
\(\Rightarrow\)3A - A= (32 + 33 + 34 +.....+ 3101) - (3 + 32 + 33 +....+ 3100)
\(\Rightarrow\)2A= 3101 - 3
mà 2A + 3 = 3n
\(\Rightarrow\)3101 - 3 + 3 = 3n
\(\Rightarrow\)3101 = 3n
\(\Rightarrow\)n=101
Ta có: 3A=32+33+...+3101
3A-A=2A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
A=\(\frac{3^{101}-3}{2}\)
=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3
=(3101-3)+3
=3101
Mà 2A+3=3n
=>3101=3n
=>n=101
A=3+32+33+...+3100
2A=(3+32+33+...+3100)x2
2A=32+33+34...+3101
2A-A=3101-3
mà 3n=2A+3=3101-3+3=3101
suy ra n=101
có A=3+3^2+3^3+..+3^100
3A=3.3+3^2.3+3^3.3+..+3^100.3
3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)
2A=3^101-3
LẤY 3^101-3+3=3^n
3^101=3^n
⇒n=101
Ta có (1)
(2)
Lấy (2) trừ (1) được .
Do đó,
Mà theo đề bài .
Vậy .
=>3A=32+32+…+3101
=>3A-A=32+33+…+3101-3-32-…-3100
=>2A=3101-3
=>2A+3=3101=3N
=>N=101
Vậy N=101
3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101
A=3+32+33+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+33+...+3100)
2A=3101-3
2A+3=3101
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\)
Theo đề bài ta có 2A + 3 = 3n ( \(n\in N\) )
\(\Rightarrow2A+3=3^{101}-3+3=3^n\)
\(\Rightarrow2A+3=3^{101}=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)
Vậy n = 101
Ta có: A = 3 + 3 2 + 3 3 + . . . + 3 100
=> 3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101
=> 3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )
=> 2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100
2 A = 3 101 - 3 <=> 2 A + 3 = 3 101 , mà 2 A + 3 = 3 n
=> n = 101
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100
\(3A=3^2+3^3+3^4+...+3^{2021}\)
\(2A=3A-A=3^{2021}-3\)
\(\Rightarrow2A+3=3^{2021}-3+3=3^{2021}=3^n\Rightarrow n=2021\)