K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2021

\(3A=3^2+3^3+3^4+...+3^{2021}\)

\(2A=3A-A=3^{2021}-3\)

\(\Rightarrow2A+3=3^{2021}-3+3=3^{2021}=3^n\Rightarrow n=2021\)

9 tháng 8 2021

A = 3 + 32 + 33 + ...+3100 

3A = 32 + 33 + 34 + ...+ 3101

3A - A = ( 32 + 33 + 34 + ...+ 3101 )  - ( 3 + 32 + 33 + ...+3100  ) 

 2A = 3101 - 3 

Thay vào 2A + 3 = 3n ta có 

 3101 - 3 + 3 = 3n

3101 = 3n

=> n = 101

9 tháng 8 2021

A = 3 + 32 + 33 +....+ 3100

\(\Rightarrow\) 3A= 3.(3 + 32 + 33 +....+ 3100)

\(\Rightarrow\) 3A= 32 + 33 + 34 +.....+ 3101

\(\Rightarrow\)3A - A= (32 + 33 + 34 +.....+ 3101) - (3 + 32 + 33 +....+ 3100)

\(\Rightarrow\)2A= 3101 - 3

mà 2A + 3 = 3n

\(\Rightarrow\)3101 - 3 + 3 = 3n

\(\Rightarrow\)3101 = 3n

\(\Rightarrow\)n=101

22 tháng 1 2016

Ta có: 3A=32+33+...+3101

3A-A=2A=(32+33+...+3101)-(3+32+...+3100)

2A=3101-3

A=\(\frac{3^{101}-3}{2}\)

=>2A+3=2.\(\frac{3^{101}-3}{2}\)+3

            =(3101-3)+3

           =3101

Mà 2A+3=3n

=>3101=3n

=>n=101

22 tháng 1 2016

A=3+32+33+...+3100

2A=(3+32+33+...+3100)x2

2A=32+33+34...+3101

2A-A=3101-3

mà 3n=2A+3=3101-3+3=3101

suy ra n=101

có A=3+3^2+3^3+..+3^100

3A=3.3+3^2.3+3^3.3+..+3^100.3

3A=3^2+3^3+3^4+..+3^101
⇒2A=(3^2+3^3+3^4+..+3^101)-(3+3^2+3^3+..+3^100)

2A=3^101-3

LẤY 3^101-3+3=3^n

3^101=3^n

⇒n=101

15 tháng 6 2021

Ta có A = 3 + 3^2 + 3^3 + ... +3^{100} (1)

3A = 3^2 + 3^3 + ... +3^{100} + 3^{101} (2)

Lấy (2) trừ (1) được 2A = 3^{101} - 3.

Do đó, 2A + 3 = 3^{101}

Mà theo đề bài 2A + 3 = 3^n.

Vậy n = 101.

15 tháng 8 2015

=>3A=32+32+…+3101

=>3A-A=32+33+…+3101-3-32-…-3100

=>2A=3101-3

=>2A+3=3101=3N

=>N=101

Vậy N=101

15 tháng 8 2015

3A = \(3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)\)- \(\left(3+3^2+3^3+..+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\Rightarrow2A+3=3^{101}\)
Vậy n = 101

20 tháng 7 2021

A=3+32+33+...+3100

3A=32+33+...+3101

3A-A=(32+33+...+3101)-(3+32+33+...+3100)

2A=3101-3

2A+3=3101

20 tháng 7 2021

\(A=3+3^2+3^3+...+3^{100}\) 

\(\Rightarrow3A=3.\left(3+3^2+3^3+...+3^{100}\right)\) 

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\) 

\(\Rightarrow3A-A=2A=\left[3^2+3^3+3^4+...+3^{101}\right]-\left[3+3^2+3^3+...+3^{100}\right]\)\(\Rightarrow2A=3^{101}-3\) 

Theo đề bài ta có  2A + 3 = 3n ( \(n\in N\) )

\(\Rightarrow2A+3=3^{101}-3+3=3^n\) 

\(\Rightarrow2A+3=3^{101}=3^n\)  

\(\Rightarrow3^{101}=3^n\) 

\(\Rightarrow101=n\) ( thỏa mãn điều kiện \(n\in N\)

Vậy n = 101 

 

26 tháng 5 2018

Đáp án cần chọn là: C

24 tháng 12 2021

C bạn nhé n bằng  101

22 tháng 11 2018

Ta có:  A = 3 + 3 2 + 3 3 + . . . + 3 100

=>  3 A = 3 2 + 3 3 + 3 4 + . . . + 3 101

=>  3 A - A = ( 3 2 + 3 3 + 3 4 + . . . + 3 101 ) - ( 3 + 3 2 + 3 3 + . . . + 3 100 )

=>  2 A = 3 2 + 3 3 + 3 4 + . . . + 3 101 - 3 - 3 2 - 3 3 - . . . - 3 100

2 A = 3 101 - 3 <=>  2 A + 3 = 3 101 , mà  2 A + 3 = 3 n

=> n = 101

13 tháng 8 2021

A=3+32+33+...+399

3A=32+33+...+3100

3A-A=(32+33+...+3100)-(3+32+33+...+399)

2A=3100-3

2A+3=3100

⇒n=100

13 tháng 8 2021

Đây nè bạn, chúc bạn học tốt :))
A = 3 + 3+ 33+ ... + 399
3A = 3. (3 + 3+ 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100