Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/2 = 1+9+9^2+....+9^2009
9/2A = 9+9^2+9^3+....+9^2010
4A=9/2A-A/2= (9+9^2+9^2+....+9^2010) - (1+9+9^2+....+9^2009) = 9^2010 - 1 = (9^1005-1).(9^1005+1)
=> A = (9^1005-1)/2 . (9^1005+1)/2
Ta thấy 9^1005-1 và 9^1005+1 là 2 số chẵn liên tiếp nên (9^1005-1)/2 và (9^1005+1)/2 là 2 số tự nhiên liên tiếp
=> ĐPCM
k mk nha
Lời giải:
\(A=2(9^{2009}+9^{2008}+....+9+1)\)
\(9A=2(9^{2010}+9^{2009}+...+9^2+9)\)
Trừ theo vế:
\(8A=2(9^{2010}-1)\Rightarrow A=\frac{9^{2010}-1}{4}=\frac{(9^{1005}-1)(9^{1005}+1)}{4}\)
\(=\frac{9^{1005}-1}{2}.\frac{9^{1005}+1}{2}\)
Thấy rằng \(9^{1005}-1\vdots 9-1\vdots 2\Rightarrow \frac{9^{1005}-1}{2}\in\mathbb{N}\); \(9^{1005}+1\vdots 9+1\vdots 2\Rightarrow \frac{9^{1005}+1}{2}\in\mathbb{N}\)
Mà \(\frac{9^{1005}+1}{2}-\frac{9^{1005}-1}{2}=1\) nên đây là 2 số tự nhiên liên tiếp.
Do đó $A$ là tích của 2 số tự nhiên liên tiếp (đpcm)
b) \(\sqrt{x^2+x+1}+\sqrt{x^2-x-1}=2\left|x\right|\)
bien doi ve trai ta co:
\(=\sqrt{x^2+2.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1}+\sqrt{x^2-2.\frac{1}{2}x-\frac{1}{2}+\frac{1}{2}-1}\)
\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}+1\right)}\)
\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2+\frac{1}{2}}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\frac{3}{2}}\)
den day thi mk chiu
a)Đặt \(x+\frac{4017}{2}=t\) thì pt <=> \(\left(t-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}\right)^4=\frac{1}{8}\)
<=>\(\left[\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2\right]^2+2\left(t-\frac{1}{2}\right)^2\left(1+\frac{1}{2}\right)^2-\frac{1}{8}=0\)
<=>\(\left[\left(t+\frac{1}{2}-t+\frac{1}{2}\right)\left(t+\frac{1}{2}+t-\frac{1}{2}\right)\right]^2+2\left(t^2-\frac{1}{4}\right)^2-\frac{1}{8}=0\)
<=>\(\left(2t\right)^2+2\left(t^4-\frac{1}{2}t^2+\frac{1}{16}\right)-\frac{1}{8}=0\Leftrightarrow4t^2+2t^4-t^2+\frac{1}{8}-\frac{1}{8}=0\)
<=>\(2t^4+3t^2=0\Leftrightarrow t^2\left(2t^2+3\right)=0\Leftrightarrow t^2=0\)(do \(2t^2+3\ge3>0\))<=>t=0
<=>\(x+\frac{4017}{2}=0\Leftrightarrow x=-\frac{4017}{2}\)