K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

A/2 = 1+9+9^2+....+9^2009

9/2A = 9+9^2+9^3+....+9^2010

4A=9/2A-A/2= (9+9^2+9^2+....+9^2010) - (1+9+9^2+....+9^2009) = 9^2010 - 1 = (9^1005-1).(9^1005+1)

=> A = (9^1005-1)/2 . (9^1005+1)/2

Ta thấy 9^1005-1 và 9^1005+1 là 2 số chẵn liên tiếp nên (9^1005-1)/2 và (9^1005+1)/2 là 2 số tự nhiên liên tiếp

=> ĐPCM

k mk nha

4 tháng 10 2019

cục xì lầu ông bê lắp

AH
Akai Haruma
Giáo viên
7 tháng 5 2020

Lời giải:

\(A=2(9^{2009}+9^{2008}+....+9+1)\)

\(9A=2(9^{2010}+9^{2009}+...+9^2+9)\)

Trừ theo vế:
\(8A=2(9^{2010}-1)\Rightarrow A=\frac{9^{2010}-1}{4}=\frac{(9^{1005}-1)(9^{1005}+1)}{4}\)

\(=\frac{9^{1005}-1}{2}.\frac{9^{1005}+1}{2}\)

Thấy rằng \(9^{1005}-1\vdots 9-1\vdots 2\Rightarrow \frac{9^{1005}-1}{2}\in\mathbb{N}\); \(9^{1005}+1\vdots 9+1\vdots 2\Rightarrow \frac{9^{1005}+1}{2}\in\mathbb{N}\)

\(\frac{9^{1005}+1}{2}-\frac{9^{1005}-1}{2}=1\) nên đây là 2 số tự nhiên liên tiếp.

Do đó $A$ là tích của 2 số tự nhiên liên tiếp (đpcm)

1 tháng 10 2017

b) \(\sqrt{x^2+x+1}+\sqrt{x^2-x-1}=2\left|x\right|\)

bien doi ve trai ta co:

\(=\sqrt{x^2+2.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1}+\sqrt{x^2-2.\frac{1}{2}x-\frac{1}{2}+\frac{1}{2}-1}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}+1\right)}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2+\frac{1}{2}}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\frac{3}{2}}\)

den day thi mk chiu

1 tháng 10 2017

a)Đặt \(x+\frac{4017}{2}=t\) thì pt <=> \(\left(t-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}\right)^4=\frac{1}{8}\)

<=>\(\left[\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2\right]^2+2\left(t-\frac{1}{2}\right)^2\left(1+\frac{1}{2}\right)^2-\frac{1}{8}=0\)

<=>\(\left[\left(t+\frac{1}{2}-t+\frac{1}{2}\right)\left(t+\frac{1}{2}+t-\frac{1}{2}\right)\right]^2+2\left(t^2-\frac{1}{4}\right)^2-\frac{1}{8}=0\)

<=>\(\left(2t\right)^2+2\left(t^4-\frac{1}{2}t^2+\frac{1}{16}\right)-\frac{1}{8}=0\Leftrightarrow4t^2+2t^4-t^2+\frac{1}{8}-\frac{1}{8}=0\)

<=>\(2t^4+3t^2=0\Leftrightarrow t^2\left(2t^2+3\right)=0\Leftrightarrow t^2=0\)(do \(2t^2+3\ge3>0\))<=>t=0

<=>\(x+\frac{4017}{2}=0\Leftrightarrow x=-\frac{4017}{2}\)