K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

b) \(\sqrt{x^2+x+1}+\sqrt{x^2-x-1}=2\left|x\right|\)

bien doi ve trai ta co:

\(=\sqrt{x^2+2.\frac{1}{2}x+\frac{1}{2}-\frac{1}{2}+1}+\sqrt{x^2-2.\frac{1}{2}x-\frac{1}{2}+\frac{1}{2}-1}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}-1\right)}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\left(\frac{1}{2}+1\right)}\)

\(=\sqrt{\left(x+\sqrt{\frac{1}{2}}\right)^2+\frac{1}{2}}+\sqrt{\left(x-\sqrt{\frac{1}{2}}\right)^2-\frac{3}{2}}\)

den day thi mk chiu

1 tháng 10 2017

a)Đặt \(x+\frac{4017}{2}=t\) thì pt <=> \(\left(t-\frac{1}{2}\right)^4+\left(t+\frac{1}{2}\right)^4=\frac{1}{8}\)

<=>\(\left[\left(t+\frac{1}{2}\right)^2-\left(t-\frac{1}{2}\right)^2\right]^2+2\left(t-\frac{1}{2}\right)^2\left(1+\frac{1}{2}\right)^2-\frac{1}{8}=0\)

<=>\(\left[\left(t+\frac{1}{2}-t+\frac{1}{2}\right)\left(t+\frac{1}{2}+t-\frac{1}{2}\right)\right]^2+2\left(t^2-\frac{1}{4}\right)^2-\frac{1}{8}=0\)

<=>\(\left(2t\right)^2+2\left(t^4-\frac{1}{2}t^2+\frac{1}{16}\right)-\frac{1}{8}=0\Leftrightarrow4t^2+2t^4-t^2+\frac{1}{8}-\frac{1}{8}=0\)

<=>\(2t^4+3t^2=0\Leftrightarrow t^2\left(2t^2+3\right)=0\Leftrightarrow t^2=0\)(do \(2t^2+3\ge3>0\))<=>t=0

<=>\(x+\frac{4017}{2}=0\Leftrightarrow x=-\frac{4017}{2}\)

8 tháng 1 2018

giải bài nào hộ mk cx được ko cần lm hết đâu :) :) :)

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

21 tháng 7 2020

a) \(\sqrt{\left(x-2\right)^2}=\sqrt{x-2}\)

\(\Leftrightarrow\left|x-2\right|=\sqrt{x-2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{x-2}\\-x+2=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy ....

Mk chỉ làm được câu a thôi mong bạn thông cảm

11 tháng 6 2017

xem lại đề câu 1đi nhé 

11 tháng 6 2017

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

26 tháng 5 2021

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v